12 18v = 2 the values of K that make each function continuous • the giller interual Sekx if 02X24 X=1-4 √x + 3 if 4 ² X ≤ 8

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Continuity of Piecewise Functions

**Problem Statement:**
Find the values of \( K \) that make each function continuous over the given interval.

**Function \( f(x) \):**

\[
f(x) = 
\begin{cases} 
x + 3 & \text{if} \, 0 \leq x \leq 4 \\
K/x & \text{if} \, 4 < x \leq 8 
\end{cases}
\]

**Solution:**
To ensure the continuity of \( f(x) \) at \( x = 4 \), the left-hand limit (from \( 0 \leq x \leq 4 \)) and the right-hand limit (from \( 4 < x \leq 8 \)) must be equal at \( x = 4 \).

Evaluating the left-hand limit at \( x = 4 \):
\[
\lim_{x \to 4^-} f(x) = 4 + 3 = 7
\]

Evaluating the right-hand limit at \( x = 4 \):
\[
\lim_{x \to 4^+} f(x) = \frac{K}{4}
\]

Set the left-hand limit equal to the right-hand limit to find \( K \):
\[
7 = \frac{K}{4}
\]

Solving for \( K \):
\[
K = 7 \times 4 = 28
\]

**Conclusion:**
The value of \( K \) that makes the function continuous is \( K = 28 \).
Transcribed Image Text:### Continuity of Piecewise Functions **Problem Statement:** Find the values of \( K \) that make each function continuous over the given interval. **Function \( f(x) \):** \[ f(x) = \begin{cases} x + 3 & \text{if} \, 0 \leq x \leq 4 \\ K/x & \text{if} \, 4 < x \leq 8 \end{cases} \] **Solution:** To ensure the continuity of \( f(x) \) at \( x = 4 \), the left-hand limit (from \( 0 \leq x \leq 4 \)) and the right-hand limit (from \( 4 < x \leq 8 \)) must be equal at \( x = 4 \). Evaluating the left-hand limit at \( x = 4 \): \[ \lim_{x \to 4^-} f(x) = 4 + 3 = 7 \] Evaluating the right-hand limit at \( x = 4 \): \[ \lim_{x \to 4^+} f(x) = \frac{K}{4} \] Set the left-hand limit equal to the right-hand limit to find \( K \): \[ 7 = \frac{K}{4} \] Solving for \( K \): \[ K = 7 \times 4 = 28 \] **Conclusion:** The value of \( K \) that makes the function continuous is \( K = 28 \).
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning