11.9 The brakes of a car are applied, causing it to slow down at a rate of 10 ft/s. Knowing that the car stops in 300 ft, determine (a) how fast the ear was traveling immediately before the brakes were applied, (b) the time required for the car to stop.
11.9 The brakes of a car are applied, causing it to slow down at a rate of 10 ft/s. Knowing that the car stops in 300 ft, determine (a) how fast the ear was traveling immediately before the brakes were applied, (b) the time required for the car to stop.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
Related questions
Question
Please answer 11.9only with clear and complete solutions. Thank you
![11.5 The motion of a particle is defined by the relation x =
12t + 3t +3, where r and t are expressed in meters and seconds,
respectively. Determine the time, the position, and the velocity
when a = 0.
6 – 27
11.6 The motion of a particle is defined by the relation r =
24t
8, where x and t are expressed in inches and seconds,
respectively. Determine (a) when the velocity is zero, (b) the posi-
tion and the total distance traveled when the acceleration is zero.
11.7 The motion of a particle is defined by the relation r
24t + 4, where r is expressed in meters and t in seconds. Deter-
mine (a) when the velocity is zero, (b) the position and the total
distance traveled when the acceleration is zero.
= 2 - 15
+.
71.8 The motion of a particle is defined by the relation r = -6-
36r
40, where r and t are expressed in feet and seconds, respec-
tively. Determine (a) when the velocity is zero, (b) the velocity, the
acceleration, and the total distance traveled when x = 0.
11.9 The brakes of a car are applied, causing it to slow down at a rate
of 10 f/s. Knowing that the car stops in 300 ft, determine (a) how
fast the ear was traveling immediately before the brakes were
applied, (b) the time required for the car to stop.
11.10 The acceleration of a paurticle is directly proportional to the time t.
16 in./s. Knowing
1 s, determine
At t = 0, the velocity of the particle is e
that c
the velocity, the position, and the total distance traveled when
r = 7 s.
15 in./s and that x
20 in. whent](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F727b753b-372d-448e-8bbc-0c6a327540bb%2F2504d688-b03b-4fae-9848-5930b711ea83%2Fqao8uai_processed.jpeg&w=3840&q=75)
Transcribed Image Text:11.5 The motion of a particle is defined by the relation x =
12t + 3t +3, where r and t are expressed in meters and seconds,
respectively. Determine the time, the position, and the velocity
when a = 0.
6 – 27
11.6 The motion of a particle is defined by the relation r =
24t
8, where x and t are expressed in inches and seconds,
respectively. Determine (a) when the velocity is zero, (b) the posi-
tion and the total distance traveled when the acceleration is zero.
11.7 The motion of a particle is defined by the relation r
24t + 4, where r is expressed in meters and t in seconds. Deter-
mine (a) when the velocity is zero, (b) the position and the total
distance traveled when the acceleration is zero.
= 2 - 15
+.
71.8 The motion of a particle is defined by the relation r = -6-
36r
40, where r and t are expressed in feet and seconds, respec-
tively. Determine (a) when the velocity is zero, (b) the velocity, the
acceleration, and the total distance traveled when x = 0.
11.9 The brakes of a car are applied, causing it to slow down at a rate
of 10 f/s. Knowing that the car stops in 300 ft, determine (a) how
fast the ear was traveling immediately before the brakes were
applied, (b) the time required for the car to stop.
11.10 The acceleration of a paurticle is directly proportional to the time t.
16 in./s. Knowing
1 s, determine
At t = 0, the velocity of the particle is e
that c
the velocity, the position, and the total distance traveled when
r = 7 s.
15 in./s and that x
20 in. whent
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Structural Analysis](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337630931/9781337630931_smallCoverImage.jpg)
![Structural Analysis (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134610672/9780134610672_smallCoverImage.gif)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Principles of Foundation Engineering (MindTap Cou…](https://www.bartleby.com/isbn_cover_images/9781337705028/9781337705028_smallCoverImage.gif)
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
![Structural Analysis](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337630931/9781337630931_smallCoverImage.jpg)
![Structural Analysis (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134610672/9780134610672_smallCoverImage.gif)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Principles of Foundation Engineering (MindTap Cou…](https://www.bartleby.com/isbn_cover_images/9781337705028/9781337705028_smallCoverImage.gif)
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
![Fundamentals of Structural Analysis](https://www.bartleby.com/isbn_cover_images/9780073398006/9780073398006_smallCoverImage.gif)
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
![Sustainable Energy](https://www.bartleby.com/isbn_cover_images/9781337551663/9781337551663_smallCoverImage.gif)
![Traffic and Highway Engineering](https://www.bartleby.com/isbn_cover_images/9781305156241/9781305156241_smallCoverImage.jpg)
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning