100 kN lsize as sho 80 [A find the diameter of the rivet. 18. A bracket in the form of a plate is fitted to a column by means of four rivets of the same size, as shown in Fig. 9.39. A load of 100 kN is applied to the bracket at an angle of 60° to the horizontal and the line of action of the load passes through the centre of the bot- tom rivet. If the maximum shear stress for the material of the rivet 80 80 K60° is 70 MPa, find the diameter of rivets. What will be the thickness of the plate if the crushing stress is 100 MPa? [Ans. 29 mm; 1.5 mm] All dimensions in mm. Fig. 9.39

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
All dimensions in mm.
All dimensions in mm.
Fig. 9.37
Fig. 9.38
100 kN
size
shov
80
fina the diameter of the rivet.
[A
18. A bracket in the form of a plate is fitted to a column by means of
four rivets of the same size, as shown in Fig. 9.39. A load of 100
kN is applied to the bracket at an angle of 60° to the horizontal and
the line of action of the load passes through the centre of the bot-
tom rivet. If the maximum shear stress for the material of the rivet
80
80
60°
is 70 MPa, find the diameter of rivets. What will be the thickness
of the plate if the crushing stress is 100 MPa?
[Ans. 29 mm; 1.5 mm]
All dimensions in mm.
Fig. 9.39
Transcribed Image Text:All dimensions in mm. All dimensions in mm. Fig. 9.37 Fig. 9.38 100 kN size shov 80 fina the diameter of the rivet. [A 18. A bracket in the form of a plate is fitted to a column by means of four rivets of the same size, as shown in Fig. 9.39. A load of 100 kN is applied to the bracket at an angle of 60° to the horizontal and the line of action of the load passes through the centre of the bot- tom rivet. If the maximum shear stress for the material of the rivet 80 80 60° is 70 MPa, find the diameter of rivets. What will be the thickness of the plate if the crushing stress is 100 MPa? [Ans. 29 mm; 1.5 mm] All dimensions in mm. Fig. 9.39
Expert Solution
steps

Step by step

Solved in 4 steps with 1 images

Blurred answer
Knowledge Booster
Design of Power Transmission Elements and Power Transmission Systems
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY