10.10 LAB: Quadratic formula Implement the quadratic_formula() function. The function takes 3 arguments, a, b, and c, and computes the two results of the quadratic formula: x1 = 2-3-77 -b+√b² - 4ac -b-√b² - 4ac 2a The quadratic_formula() function returns the tuple (x1, x2). Ex: When a = 1, b = -5, and c = 6, quadratic_formula() returns (3, 2). Code provided in main.py reads a single input line containing values for a, b, and c, separated by spaces. Each input is converted to a float and passed to the quadratic_formula() function. Ex: If the input is: x2 = 2a
10.10 LAB: Quadratic formula Implement the quadratic_formula() function. The function takes 3 arguments, a, b, and c, and computes the two results of the quadratic formula: x1 = 2-3-77 -b+√b² - 4ac -b-√b² - 4ac 2a The quadratic_formula() function returns the tuple (x1, x2). Ex: When a = 1, b = -5, and c = 6, quadratic_formula() returns (3, 2). Code provided in main.py reads a single input line containing values for a, b, and c, separated by spaces. Each input is converted to a float and passed to the quadratic_formula() function. Ex: If the input is: x2 = 2a
Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
Related questions
Question
![```python
# TODO: Import math module
def quadratic_formula(a, b, c):
# TODO: Compute the quadratic formula results in variables x1 and x2
return (x1, x2)
def print_number(number, prefix_str):
if float(int(number)) == number:
print(f'{prefix_str}{number:.0f}')
else:
print(f'{prefix_str}{number:.2f}')
if __name__ == "__main__":
input_line = input()
split_line = input_line.split(" ")
a = float(split_line[0])
b = float(split_line[1])
c = float(split_line[2])
solution = quadratic_formula(a, b, c)
print(f'Solutions to {a:.0f}x^2 + {b:.0f}x + {c:.0f} = 0')
print_number(solution[0], 'x1 = ')
print_number(solution[1], 'x2 = ')
```
### Explanation:
**Code Overview:**
1. **Import Statement (Line 1):**
- A placeholder comment for importing the `math` module, which is necessary for calculating the quadratic formula.
2. **Quadratic Formula Function (Lines 3-6):**
- `quadratic_formula(a, b, c)`: A function intended to calculate the solutions of a quadratic equation. The implementation is missing (`x1` and `x2` are placeholders).
3. **Printing Function (Lines 8-13):**
- `print_number(number, prefix_str)`: This function prints a number with a specific format. If the number is an integer, it prints without decimals; otherwise, it formats to two decimal places.
4. **Main Program (Lines 15-24):**
- The program starts here when executed directly.
- Reads input and splits it to extract `a`, `b`, and `c`.
- Calls `quadratic_formula` to get solutions (currently not functional due to missing calculations).
- Prints the quadratic equation and its solutions formatted using `print_number`.
**Potential Errors:**
- The core logic for computing the roots using the quadratic formula is not implemented.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9978ffa8-8e6a-4550-8363-e044b6a6e895%2Fdd360eff-fe97-4b45-a548-cec454b2b516%2Faj0yt9_processed.png&w=3840&q=75)
Transcribed Image Text:```python
# TODO: Import math module
def quadratic_formula(a, b, c):
# TODO: Compute the quadratic formula results in variables x1 and x2
return (x1, x2)
def print_number(number, prefix_str):
if float(int(number)) == number:
print(f'{prefix_str}{number:.0f}')
else:
print(f'{prefix_str}{number:.2f}')
if __name__ == "__main__":
input_line = input()
split_line = input_line.split(" ")
a = float(split_line[0])
b = float(split_line[1])
c = float(split_line[2])
solution = quadratic_formula(a, b, c)
print(f'Solutions to {a:.0f}x^2 + {b:.0f}x + {c:.0f} = 0')
print_number(solution[0], 'x1 = ')
print_number(solution[1], 'x2 = ')
```
### Explanation:
**Code Overview:**
1. **Import Statement (Line 1):**
- A placeholder comment for importing the `math` module, which is necessary for calculating the quadratic formula.
2. **Quadratic Formula Function (Lines 3-6):**
- `quadratic_formula(a, b, c)`: A function intended to calculate the solutions of a quadratic equation. The implementation is missing (`x1` and `x2` are placeholders).
3. **Printing Function (Lines 8-13):**
- `print_number(number, prefix_str)`: This function prints a number with a specific format. If the number is an integer, it prints without decimals; otherwise, it formats to two decimal places.
4. **Main Program (Lines 15-24):**
- The program starts here when executed directly.
- Reads input and splits it to extract `a`, `b`, and `c`.
- Calls `quadratic_formula` to get solutions (currently not functional due to missing calculations).
- Prints the quadratic equation and its solutions formatted using `print_number`.
**Potential Errors:**
- The core logic for computing the roots using the quadratic formula is not implemented.
![**10.10 LAB: Quadratic formula**
Implement the `quadratic_formula()` function. The function takes 3 arguments, a, b, and c, and computes the two results of the quadratic formula:
\[
x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}
\]
\[
x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}
\]
The `quadratic_formula()` function returns the tuple \((x1, x2)\). For example, when a = 1, b = -5, and c = 6, `quadratic_formula()` returns \((3, 2)\).
Code provided in `main.py` reads a single input line containing values for a, b, and c, separated by spaces. Each input is converted to a float and passed to the `quadratic_formula()` function.
**Example:**
If the input is:
```
2 -3 -77
```
the output is:
```
Solutions to 2x^2 + -3x + -77 = 0
x1 = 7
x2 = -5.50
```](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9978ffa8-8e6a-4550-8363-e044b6a6e895%2Fdd360eff-fe97-4b45-a548-cec454b2b516%2Fsrvsril_processed.png&w=3840&q=75)
Transcribed Image Text:**10.10 LAB: Quadratic formula**
Implement the `quadratic_formula()` function. The function takes 3 arguments, a, b, and c, and computes the two results of the quadratic formula:
\[
x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}
\]
\[
x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}
\]
The `quadratic_formula()` function returns the tuple \((x1, x2)\). For example, when a = 1, b = -5, and c = 6, `quadratic_formula()` returns \((3, 2)\).
Code provided in `main.py` reads a single input line containing values for a, b, and c, separated by spaces. Each input is converted to a float and passed to the `quadratic_formula()` function.
**Example:**
If the input is:
```
2 -3 -77
```
the output is:
```
Solutions to 2x^2 + -3x + -77 = 0
x1 = 7
x2 = -5.50
```
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 2 images

Recommended textbooks for you

Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education

Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON

Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON

Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education

Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON

Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON

C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON

Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning

Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education