10.10 LAB: Quadratic formula Implement the quadratic_formula() function. The function takes 3 arguments, a, b, and c, and computes the two results of the quadratic formula: x1 = 2-3-77 -b+√b² - 4ac -b-√b² - 4ac 2a The quadratic_formula() function returns the tuple (x1, x2). Ex: When a = 1, b = -5, and c = 6, quadratic_formula() returns (3, 2). Code provided in main.py reads a single input line containing values for a, b, and c, separated by spaces. Each input is converted to a float and passed to the quadratic_formula() function. Ex: If the input is: x2 = 2a

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question
```python
# TODO: Import math module

def quadratic_formula(a, b, c):
    # TODO: Compute the quadratic formula results in variables x1 and x2
    return (x1, x2)

def print_number(number, prefix_str):
    if float(int(number)) == number:
        print(f'{prefix_str}{number:.0f}')
    else:
        print(f'{prefix_str}{number:.2f}')

if __name__ == "__main__":
    input_line = input()
    split_line = input_line.split(" ")
    a = float(split_line[0])
    b = float(split_line[1])
    c = float(split_line[2])
    solution = quadratic_formula(a, b, c)
    print(f'Solutions to {a:.0f}x^2 + {b:.0f}x + {c:.0f} = 0')
    print_number(solution[0], 'x1 = ')
    print_number(solution[1], 'x2 = ')
```

### Explanation:

**Code Overview:**

1. **Import Statement (Line 1):**
   - A placeholder comment for importing the `math` module, which is necessary for calculating the quadratic formula.

2. **Quadratic Formula Function (Lines 3-6):**
   - `quadratic_formula(a, b, c)`: A function intended to calculate the solutions of a quadratic equation. The implementation is missing (`x1` and `x2` are placeholders).

3. **Printing Function (Lines 8-13):**
   - `print_number(number, prefix_str)`: This function prints a number with a specific format. If the number is an integer, it prints without decimals; otherwise, it formats to two decimal places.

4. **Main Program (Lines 15-24):**
   - The program starts here when executed directly.
   - Reads input and splits it to extract `a`, `b`, and `c`.
   - Calls `quadratic_formula` to get solutions (currently not functional due to missing calculations).
   - Prints the quadratic equation and its solutions formatted using `print_number`.

**Potential Errors:**
- The core logic for computing the roots using the quadratic formula is not implemented.
Transcribed Image Text:```python # TODO: Import math module def quadratic_formula(a, b, c): # TODO: Compute the quadratic formula results in variables x1 and x2 return (x1, x2) def print_number(number, prefix_str): if float(int(number)) == number: print(f'{prefix_str}{number:.0f}') else: print(f'{prefix_str}{number:.2f}') if __name__ == "__main__": input_line = input() split_line = input_line.split(" ") a = float(split_line[0]) b = float(split_line[1]) c = float(split_line[2]) solution = quadratic_formula(a, b, c) print(f'Solutions to {a:.0f}x^2 + {b:.0f}x + {c:.0f} = 0') print_number(solution[0], 'x1 = ') print_number(solution[1], 'x2 = ') ``` ### Explanation: **Code Overview:** 1. **Import Statement (Line 1):** - A placeholder comment for importing the `math` module, which is necessary for calculating the quadratic formula. 2. **Quadratic Formula Function (Lines 3-6):** - `quadratic_formula(a, b, c)`: A function intended to calculate the solutions of a quadratic equation. The implementation is missing (`x1` and `x2` are placeholders). 3. **Printing Function (Lines 8-13):** - `print_number(number, prefix_str)`: This function prints a number with a specific format. If the number is an integer, it prints without decimals; otherwise, it formats to two decimal places. 4. **Main Program (Lines 15-24):** - The program starts here when executed directly. - Reads input and splits it to extract `a`, `b`, and `c`. - Calls `quadratic_formula` to get solutions (currently not functional due to missing calculations). - Prints the quadratic equation and its solutions formatted using `print_number`. **Potential Errors:** - The core logic for computing the roots using the quadratic formula is not implemented.
**10.10 LAB: Quadratic formula**

Implement the `quadratic_formula()` function. The function takes 3 arguments, a, b, and c, and computes the two results of the quadratic formula:

\[
x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}
\]

\[
x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}
\]

The `quadratic_formula()` function returns the tuple \((x1, x2)\). For example, when a = 1, b = -5, and c = 6, `quadratic_formula()` returns \((3, 2)\).

Code provided in `main.py` reads a single input line containing values for a, b, and c, separated by spaces. Each input is converted to a float and passed to the `quadratic_formula()` function.

**Example:**

If the input is:
```
2 -3 -77
```

the output is:
```
Solutions to 2x^2 + -3x + -77 = 0
x1 = 7
x2 = -5.50
```
Transcribed Image Text:**10.10 LAB: Quadratic formula** Implement the `quadratic_formula()` function. The function takes 3 arguments, a, b, and c, and computes the two results of the quadratic formula: \[ x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \] \[ x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a} \] The `quadratic_formula()` function returns the tuple \((x1, x2)\). For example, when a = 1, b = -5, and c = 6, `quadratic_formula()` returns \((3, 2)\). Code provided in `main.py` reads a single input line containing values for a, b, and c, separated by spaces. Each input is converted to a float and passed to the `quadratic_formula()` function. **Example:** If the input is: ``` 2 -3 -77 ``` the output is: ``` Solutions to 2x^2 + -3x + -77 = 0 x1 = 7 x2 = -5.50 ```
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education