10. The following is the graph of f'(x)(the first derivative!). When A. (-4, –2) U (0, 2.5) U (4.5, ∞) В. (0),3) U (5, оо) C. (-4, 0) U (1, ∞) D. (-0, –5) U (5, ∞) E. (-∞,–5) U (1, 4) U (5, ∞) F. None of these brin 0.5 -0.5
10. The following is the graph of f'(x)(the first derivative!). When A. (-4, –2) U (0, 2.5) U (4.5, ∞) В. (0),3) U (5, оо) C. (-4, 0) U (1, ∞) D. (-0, –5) U (5, ∞) E. (-∞,–5) U (1, 4) U (5, ∞) F. None of these brin 0.5 -0.5
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
100%
thank you!
![**Question 10:**
The following is the graph of \( f'(x) \) (the first derivative). When is \( f(x) \) increasing?
**Options:**
A. \((-4, -2) \cup (0, 2.5) \cup (4.5, \infty)\)
B. \((0, 3) \cup (5, \infty)\)
C. \((-4, 0) \cup (1, \infty)\)
D. \((-\infty, -5) \cup (5, \infty)\)
E. \((-\infty, -5) \cup (1, 4) \cup (5, \infty)\)
F. None of these
**Graph Description:**
The graph provided represents the first derivative, \( f'(x) \). It shows:
- A segment decreasing below the x-axis starting from the left and crossing the x-axis near \( x = -5.5 \). It reaches a minimum at about \( x = -5 \), and then increases, crossing the x-axis at \( x = -3.5 \).
- The graph remains above the x-axis indicating an increasing function for \( x \) values just above \( -3.5 \), peaking at \( x = 1 \).
- It descends again between \( x = 2 \) and \( x = 3 \).
- After \( x = 3 \), the graph increases and crosses the x-axis near \( x = 4 \).
- A notable decrease occurs between \( x = 4 \) and \( x = 5 \) before sharply increasing past \( x = 5 \) into \(\infty\).
**Conclusion:**
To determine when \( f(x) \) is increasing, identify the intervals where \( f'(x) > 0\). The graph shows \( f'(x) > 0 \) approximately within the intervals \((-3.5, 1)\), \((4, 5)\), and \((5, \infty)\). These correspond most closely to option E.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fde6895c1-44a3-44a7-8e07-4b4c4e273e3b%2F9ffa739a-1bae-4fac-b8ba-97f1058f6320%2Fzzzfas8_processed.png&w=3840&q=75)
Transcribed Image Text:**Question 10:**
The following is the graph of \( f'(x) \) (the first derivative). When is \( f(x) \) increasing?
**Options:**
A. \((-4, -2) \cup (0, 2.5) \cup (4.5, \infty)\)
B. \((0, 3) \cup (5, \infty)\)
C. \((-4, 0) \cup (1, \infty)\)
D. \((-\infty, -5) \cup (5, \infty)\)
E. \((-\infty, -5) \cup (1, 4) \cup (5, \infty)\)
F. None of these
**Graph Description:**
The graph provided represents the first derivative, \( f'(x) \). It shows:
- A segment decreasing below the x-axis starting from the left and crossing the x-axis near \( x = -5.5 \). It reaches a minimum at about \( x = -5 \), and then increases, crossing the x-axis at \( x = -3.5 \).
- The graph remains above the x-axis indicating an increasing function for \( x \) values just above \( -3.5 \), peaking at \( x = 1 \).
- It descends again between \( x = 2 \) and \( x = 3 \).
- After \( x = 3 \), the graph increases and crosses the x-axis near \( x = 4 \).
- A notable decrease occurs between \( x = 4 \) and \( x = 5 \) before sharply increasing past \( x = 5 \) into \(\infty\).
**Conclusion:**
To determine when \( f(x) \) is increasing, identify the intervals where \( f'(x) > 0\). The graph shows \( f'(x) > 0 \) approximately within the intervals \((-3.5, 1)\), \((4, 5)\), and \((5, \infty)\). These correspond most closely to option E.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning