10. Let A be an m x n matrix and B be an n x p matrix. Prove that a. N(B) C N(AB). b. C(AB) C C(A). (Hint: Use Proposition 2.1.) c. N(B) = N(AB) when A is n × n and nonsingular. (Hint: See the box on p. 12.) d. C(AB) = C(A) when B is n x n and nonsingular. 11 NCAY

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

linear algebra, 3.2 Q10

10. Let \( A \) be an \( m \times n \) matrix and \( B \) be an \( n \times p \) matrix. Prove that 
a. \( \mathcal{N}(B) \subset \mathcal{N}(AB) \).
b. \( \mathcal{C}(AB) \subset \mathcal{C}(A) \). (Hint: Use Proposition 2.1.)
c. \( \mathcal{N}(B) = \mathcal{N}(AB) \) when \( A \) is \( n \times n \) and nonsingular. (Hint: See the box on p. 12.)
d. \( \mathcal{C}(AB) = \mathcal{C}(A) \) when \( B \) is \( n \times n \) and nonsingular.
Transcribed Image Text:10. Let \( A \) be an \( m \times n \) matrix and \( B \) be an \( n \times p \) matrix. Prove that a. \( \mathcal{N}(B) \subset \mathcal{N}(AB) \). b. \( \mathcal{C}(AB) \subset \mathcal{C}(A) \). (Hint: Use Proposition 2.1.) c. \( \mathcal{N}(B) = \mathcal{N}(AB) \) when \( A \) is \( n \times n \) and nonsingular. (Hint: See the box on p. 12.) d. \( \mathcal{C}(AB) = \mathcal{C}(A) \) when \( B \) is \( n \times n \) and nonsingular.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,