10. In a steam boiler, hot gases from a fire transfer heat to water which vapourizes at constant temperature. In certain case, the gases are cooled from 1100°C to 550°C while the water evaporates at 220°C. The specific heat of gases is 1.005 kJ/kg K, and the latent heat of water at 220°C is 1858.5 kJ/kg. All the heat transferred from the gases goes to the water. How much does the total entropy of the combined system of gas and water increase as a result of irreversible heat transfer ? Obtain the result on the basis of 1 kg of water evaporated. If the temperature of the surroundings is 30°C find the increase in unavailable energy due to irreversible heat transfer. [Ans. 2.045 kJ/K, 620 kJ]

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
10. In a steam boiler, hot gases from a fire transfer heat to water which vapourizes at constant temperature.
In certain case, the gases are cooled from 1100°C to 550°C while the water evaporates at 220°C. The
specific heat of gases is 1.005 kJ/kg K, and the latent heat of water at 220°C is 1858.5 kJ/kg. All the heat
transferred from the gases goes to the water. How much does the total entropy of the combined system of
gas and water increase as a result of irreversible heat transfer ? Obtain the result on the basis of 1 kg of
water evaporated. If the temperature of the surroundings is 30°C find the increase in unavailable energy
due to irreversible heat transfer.
[Ans. 2.045 kJ/K, 620 kJ]
Transcribed Image Text:10. In a steam boiler, hot gases from a fire transfer heat to water which vapourizes at constant temperature. In certain case, the gases are cooled from 1100°C to 550°C while the water evaporates at 220°C. The specific heat of gases is 1.005 kJ/kg K, and the latent heat of water at 220°C is 1858.5 kJ/kg. All the heat transferred from the gases goes to the water. How much does the total entropy of the combined system of gas and water increase as a result of irreversible heat transfer ? Obtain the result on the basis of 1 kg of water evaporated. If the temperature of the surroundings is 30°C find the increase in unavailable energy due to irreversible heat transfer. [Ans. 2.045 kJ/K, 620 kJ]
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Phase changes
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The