10-3. The state of strain at a point on a wrench has components €, = 120(10“), Yay = 150(i0*). Use the strain-transformation equations to determine (a) the in-plane principal strains and (b) the maximum in-plane shear strain and average normal strain. In each case specify the orientation of the element and show how the strains deform the element within x-y plane. e,= -180(10“),

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

could you solve these 2 questions using the mohr circle method ?

10-3. The state of strain at a point on a wrench
has
components e, = 120(10 "), e, = -180(10"),
Yxy = 150(10 6). Use the strain-transformation equations
to determine (a) the in-plane principal strains and (b) the
maximum in-plane shear strain and average normal strain.
In each case specify the orientation of the element and
show how the strains deform the element within x-y plane.
*10–4. The state of strain at the point on the gear tooth has
components €, = 850(10“), €, = 480(10 "), Yxy =
650(10-6). Use the strain-transformation equations to
determine (a) the in-plane principal strains and (b) the
maximum in-plane shear strain and average normal strain.
In each case specify the orientation of the element and
show how the strains deform the element within the
x-y plane.
Transcribed Image Text:10-3. The state of strain at a point on a wrench has components e, = 120(10 "), e, = -180(10"), Yxy = 150(10 6). Use the strain-transformation equations to determine (a) the in-plane principal strains and (b) the maximum in-plane shear strain and average normal strain. In each case specify the orientation of the element and show how the strains deform the element within x-y plane. *10–4. The state of strain at the point on the gear tooth has components €, = 850(10“), €, = 480(10 "), Yxy = 650(10-6). Use the strain-transformation equations to determine (a) the in-plane principal strains and (b) the maximum in-plane shear strain and average normal strain. In each case specify the orientation of the element and show how the strains deform the element within the x-y plane.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Thermodynamic Relations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY