10 14. R(x) = 7.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Topic Video
Question
Directions say to differentiate the function. We just learned about the power rule so I'm assuming we can use that but I'm stuck on this one.
**Example 14: Function Analysis**

Given the function:
\[ 
R(x) = \frac{\sqrt{10}}{x^7} 
\]

This expression represents a rational function where the numerator is a constant, \(\sqrt{10}\), and the denominator is \(x^7\), indicating a seventh-degree polynomial in the denominator. The behavior and properties of \(R(x)\) include:

1. **Domain:** The domain of \(R(x)\) includes all real numbers except \(x = 0\), as the function is undefined when \(x = 0\).

2. **Asymptotes:**
   - **Vertical Asymptote:** At \(x = 0\), since the denominator approaches zero, \(R(x)\) approaches infinity or negative infinity. Thus, there is a vertical asymptote at \(x = 0\).
   - **Horizontal Asymptote:** As \(x\) approaches infinity or negative infinity, \(R(x)\) tends to zero because the degree of \(x\) in the denominator is greater than that of the numerator.

3. **End Behavior:** As \(x\) increases or decreases without bound, \(R(x)\) approaches zero.

**Discussion and Analysis:**

This function showcases how polynomial powers in the denominator dominate the behavior of a function, influencing its domain and asymptotic behavior. Understanding these properties can help in sketching the graph of the function and predicting its behavior under various transformations.
Transcribed Image Text:**Example 14: Function Analysis** Given the function: \[ R(x) = \frac{\sqrt{10}}{x^7} \] This expression represents a rational function where the numerator is a constant, \(\sqrt{10}\), and the denominator is \(x^7\), indicating a seventh-degree polynomial in the denominator. The behavior and properties of \(R(x)\) include: 1. **Domain:** The domain of \(R(x)\) includes all real numbers except \(x = 0\), as the function is undefined when \(x = 0\). 2. **Asymptotes:** - **Vertical Asymptote:** At \(x = 0\), since the denominator approaches zero, \(R(x)\) approaches infinity or negative infinity. Thus, there is a vertical asymptote at \(x = 0\). - **Horizontal Asymptote:** As \(x\) approaches infinity or negative infinity, \(R(x)\) tends to zero because the degree of \(x\) in the denominator is greater than that of the numerator. 3. **End Behavior:** As \(x\) increases or decreases without bound, \(R(x)\) approaches zero. **Discussion and Analysis:** This function showcases how polynomial powers in the denominator dominate the behavior of a function, influencing its domain and asymptotic behavior. Understanding these properties can help in sketching the graph of the function and predicting its behavior under various transformations.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Rules of Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning