(a) Suppose f:R³ → R² is a function for which and Could f be linear? Why or why not? (b) . that Suppose g: R? → R³ is a linear function, and you know • (8) • (C) - } (8)- 3 and

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
icon
Concept explainers
Question
100%

Please see picture for the questions as it is a bit hard to type out. It is about linear functions.

### Problem Set

**(a)** Suppose \( f:\mathbb{R}^3 \rightarrow \mathbb{R}^2 \) is a function for which 
\[ f\left(\begin{bmatrix}2 \\ -5 \\ 3\end{bmatrix}\right) = \begin{bmatrix}-1 \\ 2\end{bmatrix}, \quad f\left(\begin{bmatrix}4 \\ 1 \\ -3\end{bmatrix}\right) = \begin{bmatrix}5 \\ 2\end{bmatrix}, \quad \text{and} \quad f\left(\begin{bmatrix}6 \\ -4 \\ 0\end{bmatrix}\right) = \begin{bmatrix}3 \\ 4\end{bmatrix}. \]
Could \( f \) be linear? Why or why not?

**(b)** Suppose \( g: \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) is a linear function, and you know that 
\[ g\left(\begin{bmatrix}1 \\ 0\end{bmatrix}\right) = \begin{bmatrix}1 \\ 3 \\ -2\end{bmatrix} \quad \text{and} \quad g\left(\begin{bmatrix}0 \\ 1\end{bmatrix}\right) = \begin{bmatrix}-2 \\ 0 \\ 4\end{bmatrix}. \]
What is \( g\left(\begin{bmatrix}-2 \\ 3\end{bmatrix}\right)? \)
Transcribed Image Text:### Problem Set **(a)** Suppose \( f:\mathbb{R}^3 \rightarrow \mathbb{R}^2 \) is a function for which \[ f\left(\begin{bmatrix}2 \\ -5 \\ 3\end{bmatrix}\right) = \begin{bmatrix}-1 \\ 2\end{bmatrix}, \quad f\left(\begin{bmatrix}4 \\ 1 \\ -3\end{bmatrix}\right) = \begin{bmatrix}5 \\ 2\end{bmatrix}, \quad \text{and} \quad f\left(\begin{bmatrix}6 \\ -4 \\ 0\end{bmatrix}\right) = \begin{bmatrix}3 \\ 4\end{bmatrix}. \] Could \( f \) be linear? Why or why not? **(b)** Suppose \( g: \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) is a linear function, and you know that \[ g\left(\begin{bmatrix}1 \\ 0\end{bmatrix}\right) = \begin{bmatrix}1 \\ 3 \\ -2\end{bmatrix} \quad \text{and} \quad g\left(\begin{bmatrix}0 \\ 1\end{bmatrix}\right) = \begin{bmatrix}-2 \\ 0 \\ 4\end{bmatrix}. \] What is \( g\left(\begin{bmatrix}-2 \\ 3\end{bmatrix}\right)? \)
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Application of Integration
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,