10-105 Determine the moment of inertia of the compos- ite body shown in Fig. P10-105 with respect to the y-axis shown on the figure. The specific weiglıt of the material is 175 lb/ft. 3 in. 8 in. 6 in. 6 in. 6 in. . 6 in. 5 in. 8 in. 5 in. 12 in. 3 in. Fig. P10-105

icon
Related questions
Question
10-105 Determine the moment of inertia of the compos-
ite body shown in Fig. P10-105 with respect to the y-axis
shown on the figure. The specific weiglıt of the material is
175 lb/ft.
3 in.
8 in.
6 in.
6 in.
6 in. .
6 in.
5 in.
8 in.
5 in.
12 in.
3 in.
Fig. P10-105
Transcribed Image Text:10-105 Determine the moment of inertia of the compos- ite body shown in Fig. P10-105 with respect to the y-axis shown on the figure. The specific weiglıt of the material is 175 lb/ft. 3 in. 8 in. 6 in. 6 in. 6 in. . 6 in. 5 in. 8 in. 5 in. 12 in. 3 in. Fig. P10-105
Expert Solution
Concept and Principle: Moment of Inertia.

Moment of inertia it determines the torque needed for a desired angular acceleration about rotational axis. it depends on the mass of the body chosen and the axis in consideration. Mathematically moment of inertia I is defined as the ratio of the net angular momentum L of a system to its angular velocity ω around a principal axis that is,

I=Lω

Parallel Axes Theorem:

The moment of inertia of a body about an axis parallel to the body passing through its center is equal to the sum of moment of inertia of body about the axis passing through the center and product of mass of the body times the square of distance between the two axes.

I=Ic+Mh2I: the moment of inertia of the body Ic: the moment of inertia about the center M: the mass of the body h2: the square of the distance between the two axes

Now the given problem is of a composite area. For such a system to find moment of inertia around and axis we need to,

  • Identify simple shaped subareas in the composite.
  • Determine the distance from centroid to each of those subareas.
  • Determine moment of inertia of each subarea
  • Apply Parallel Axes theorem on each subarea
  • Add or subtract (negative subareas) the moments of inertia from the last step.
Step 1: Selecting subparts

Advanced Physics homework question answer, step 2, image 1

The lines in section 2 shows the hole 

Calculation: Moment of inertia of section 1

Mass of section 1 is,

m=Wg=ρVg (1)

Now volume V of section1 is given by,

V=bhLb=1212 fth=812 ftL=312 ftV=(1212 ft)×(812 ft)×(312 ft)=0.166 ft3

Now substituting in eq(1)

m=ρVgρ=175 lb.ft-3g=32.2m=(175 lb.ft-3)×(0.166 ft3)32.2=0.902 slugs

Now we calculate moment of inertia of section 1 along Y axis,

Iy1=IyG+dy2m=112m(b2+h2)+(zG)2mIyG: Moment of inertia of section 1 at its centroid about y axiszG: Distance from centriod to z axis.

Now substituting,

m=0.902 slugszG=412 ftIy1=112m(b2+h2)+(zG)2m=112×(0.902 slugs)×((1212 ft)2+(812 ft)2)+(412 ft)2×(0.902 slugs)=0.209 slug.ft2Iy1==0.209 slug.ft2

Calculation: Moment of inertia of section 2

Now volume V of section 2 is given by,

V=bhLb=1212 fth=312 ftL=1512 ftV=(1212 ft)×(312 ft)×(1512 ft)=0.3125 ft3

Now substituting in eq(1)

m=ρVgρ=175 lb.ft-3g=32.2m=(175 lb.ft-3)×(0.3125 ft3)32.2=1.69 slugs

Now we calculate moment of inertia of section 2 along Y axis,

Iy2=112m(b2+h2)+(zG)2m

Now substituting,

m=1.69 slugszG=1.512 ftIy2=112m(b2+h2)+(zG)2m=112×(1.69 slugs)×((1212 ft)2+(312 ft)2)+(1.512 ft)2×(1.69 slugs)=0.1769 slug.ft2Iy2==0.1769 slug.ft2

steps

Step by step

Solved in 8 steps with 1 images

Blurred answer
Similar questions