Calculate the torque about the origin if a force, F = (42 - 33 + 2k) N, acts on a particle located at 7 = (32 +23 - 1k)m. O.(+23-1k) N. m O (12-103-17k) N.m O (32-23-1k) N.m (32 +93 +12k) N.m

icon
Related questions
Question
100%
**Calculate the Torque About the Origin**

Given:
- A force **F** = (4**i** - 3**j** + 2**k**) N
- A particle located at **r** = (3**i** + 2**j** - 1**k**) m

**Question:** Calculate the torque about the origin.

**Choices:**

- **(A)** ( **i** + 2**j** - 1**k** ) N·m
- **(B)** ( 1**i** - 10**j** - 17**k** ) N·m
- **(C)** ( 3**i** - 2**j** - 1**k** ) N·m
- **(D)** ( 3**i** + 9**j** + 12**k** ) N·m

**Detailed Explanation of Diagrams:**
There are no graphs or diagrams in the given image.

For educational purposes, to calculate the torque **τ** about the origin, you need to take the cross product of **r** and **F**:

**τ** = **r** × **F**

For the vectors:
**r** = (3, 2, -1)
**F** = (4, -3, 2)

The cross product formula for two vectors **r** = (r₁, r₂, r₃) and **F** = (F₁, F₂, F₃) is given by:

τ = (r₂F₃ - r₃F₂) **i** - (r₁F₃ - r₃F₁) **j** + (r₁F₂ - r₂F₁) **k**

Substituting in the given values:
τ = (2*2 - (-1)*(-3)) **i** - (3*2 - (-1)*4) **j** + (3*(-3) - 2*4) **k**
τ = (4 - 3) **i** - (6 - (-4)) **j** + ((-9) - 8) **k**
τ = 1 **i** - 10 **j** - 17 **k**

So the correct answer is:
- **(B)** (1**i** -
Transcribed Image Text:**Calculate the Torque About the Origin** Given: - A force **F** = (4**i** - 3**j** + 2**k**) N - A particle located at **r** = (3**i** + 2**j** - 1**k**) m **Question:** Calculate the torque about the origin. **Choices:** - **(A)** ( **i** + 2**j** - 1**k** ) N·m - **(B)** ( 1**i** - 10**j** - 17**k** ) N·m - **(C)** ( 3**i** - 2**j** - 1**k** ) N·m - **(D)** ( 3**i** + 9**j** + 12**k** ) N·m **Detailed Explanation of Diagrams:** There are no graphs or diagrams in the given image. For educational purposes, to calculate the torque **τ** about the origin, you need to take the cross product of **r** and **F**: **τ** = **r** × **F** For the vectors: **r** = (3, 2, -1) **F** = (4, -3, 2) The cross product formula for two vectors **r** = (r₁, r₂, r₃) and **F** = (F₁, F₂, F₃) is given by: τ = (r₂F₃ - r₃F₂) **i** - (r₁F₃ - r₃F₁) **j** + (r₁F₂ - r₂F₁) **k** Substituting in the given values: τ = (2*2 - (-1)*(-3)) **i** - (3*2 - (-1)*4) **j** + (3*(-3) - 2*4) **k** τ = (4 - 3) **i** - (6 - (-4)) **j** + ((-9) - 8) **k** τ = 1 **i** - 10 **j** - 17 **k** So the correct answer is: - **(B)** (1**i** -
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer