1. Total cholesterol in children aged 10­15 years is assumed to follow a normal distribution with a mean of 191 and a standard deviation of 22.4. what proportion of children 10­15 years of age hfave total cholesterol between 180­-190? What proportion of children 10-15 years would be classified as hyperlipidemia(assume that hyperlipidemia is defined as a total cholesterol level over 200)? What is the 90th percentile of total cholesterol?

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

For this exercise please refer to the downloaded Excel Workbook (See Excel Workbook Instructions) from the JB Learning website with your access code. Please upload your answers as an excel file with properly labeled answers. At the end of the chapter 5 workbook you will find Practice problems. Please answer in excel only under practice problems 5.4 questions: 1, 2, 3, 4, 5. If help is needed, tutorials are found in the workbook with relevant problems.

Note: These pictures will give you an idea where it is in the workbook. You are responsible to use the workbook.

#1. Total cholesterol in children aged 10­15 years is assumed to follow a normal distribution with a mean of

191 and a standard deviation of 22.4.

  1. what proportion of children 10­15 years of age hfave total cholesterol between 180­-190?
  2. What proportion of children 10-15 years would be classified as hyperlipidemia(assume that hyperlipidemia

is defined as a total cholesterol level over 200)?

  1. What is the 90th percentile of total cholesterol?

Solution:

We have 

μ = 191 and  σ = 22.4

  1. a) The respective Z-­score with X = 180 and 190 is

Z = (X ­-μ)/σ

   = (180 – 191)/22.4

   = ­0.49

Z = (X ­ -μ)/σ

   = (190 – 191)/22.4

   = ­0.04

Therefore, using Z-­tables

P [­0.49 < Z < ­0.04] =0.5160 – 0.3121

                                 = 0.2039

                                 = 20.39%

  1. b) The respective Z­score with X = 200 is

Z = (X ­-μ)/σ

   = (200 – 191)/22.4

   = 0.40

Therefore, using Z-­tables

P [Z > 0.40] = 1 – 0.6554

                   = 0.3446 or 34.46%

  1. c) The respective Z-­score with p < 0.90 is 1.282

We have

Z = (X-μ)/σ

1.282 = (X – 191)/22.4

1.282*22.4 + 191 = X

X = 219.72     

  1. Among Coffee drinkers, men drank a mean of 3.2 cups per day with a standard deviation of 0.8 cups .

Assume the number of coffee drinks per day follows a normal distribution.

  1. what proportion drinks 2 cups per day or more?
  2. What proportion drank no more than 4 cups per day?
  3. if the top 5% of coffee drinkers are considered heavy coffee drinkers , what is the minimum number of

cups consumed by a heavy coffee drinker? (Hint: find the 95th percentile)

Solution:

We have 

μ= 3.2 and   σ= 0.8

  1. a) The respective Z­-score with X = 2 is

Z = (X ­-μ)/σ

   = (2 – 3.2)/0.8

   = ­1.5

Therefore, using Z-­tables

P [Z ≥­1.5] = 0.9332 or 93.32%

  1. b) The respective Z­-score with X = 4 is

Z = (X ­-μ)/σ

   = (2 – 3.2)/0.8

   = ­1.5

Therefore, using Z-­tables

P [Z ≥­1.5] = 0.9332 or 93.32%

  1. c) The respective Z­score with p < 0.96 is 1.645

We have

Z = (X ­-μ)/σ

1.645 = (X – 191)/22.4

1.645*22.4 + 191 = X

X = 227.85    

  1. A study is conducted to assess the imopact of caffeine consumption, smoking, alcohol consumption, andphysical activity on the risk of cardiovascular disease, Suppose that 40% of participants consume caffeine and smoke . If 8 participants are evaluated, what is the probability that:
  2. exactly half of them consume caffeine and smoke?
  3. at most 6 consume caffeine and smoke?

Solution:

We have n = 8 and p = 0.40. Using binomial distribution,

P [X = x] =n C x p x (1 – p) n-­x 

  1. a) P [X = 4] = 8C4 (0.40) 4(1 – 0.40) 8-­4 

                  = 4(0.40) 4(0.60) 4

                  = 0.2322

  1. b) P [X ≤ 6] = 1 – P [X > 6]

=1 – [P (X = 7) + P (X = 8)] 

=1 – (0.0079 + 0.0006)

= 0.9915 

  1. A recent study of cardiovascular risk factors reports that 30% of adults meet the criteria for hypertention. If

15 adults are assessed, what is the probability that :

  1. Exactly 5 meet the criteria for hypertension
  2. none meet the criteria for hypertension
  3. less than or equal to 7 meet the criteria for hypertension

Solution:

We have n = 15 and p = 0.30. Using binomial distribution,

P [X = x] =nC x  p x (1 – p) n­-x 

  1. a) P [X = 5] = 155(0.30) 5 (1 – 0.30) 15­-5 

                  = 15 C 5(0.30) 5 (0.70) 10

                  = 0.2061

  1. b)    P [X = 0] = 15 C 0 (0.30) 0(1 – 0.30) 15-­0 

                  = 15 C 0 (0.30) 0(0.70) 15

                  = 0.0047

  1. c) P [X ≤7] = P [X = 0] + P [X = 1] + P [X = 2] + P [X = 3] + P [X = 4] + P [X = 5] + P [X = 6] + P [X = 7]

= 0.0047 + 0.0305 + 0.0916 + 0.1700 + 0.2186 + 0.2061 + 0.1472 + 0.0811

= 0.9499

= 0.95

  1. Diastolic Blood pressure are assumed to follow a normal distribution with a mean of 85 and a standar

deviation of 12.

  1. WHAT proportion of people have diastolic blood pressures less than 90?
  2. what proportion have diastolic blood pressures between 80 and 90?
  3. If someone has a diastolic blood pressure of 100, what percentile does this represent.?

Solution:

We have 

μ = 85 and   σ = 12

  1. a) The respective Z­-score with X = 90

Z = (X ­-μ)/σ

   = (90 – 85)/12

   = 0.4167

Therefore, using Z-­tables

P [Z < 0.4167] = 0.6616 or 66.16%

  1. b) The respective Z­-score with X = 80

Z = (X -μ)/σ

   = (80 – 85)/12

   = ­0.4167

Therefore, using Z-­tables

P [­0.4167 < Z < 0.4167] = 0.6616 – 0.3384

                                      = 0.3232 or 32.32%

  1. c) The respective Z-­score with X = 100

Z = (X ­-μ)/σ

   = (100 – 85)/12

   = 1.25

Therefore, using Z-­tables

P [Z > 1.25] = 1 – 0.8944

                   = 0.1056 or 10.56%

 

 

 

This must be in an excel spreadsheet or provide with step by step instructions on how to reproduce in excel.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Inequality
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman