1.24 As depicted in Fig. Pl.24, the downward deflection y (m) of a cantilever beam with a uniform load w (kg/m) can be computed as -(x* - 4Lx + 6Lr) 24EI where x = distance (m), E = the modulus of elasticity = 2 x 10" Pa, I = moment of inertia = 3.25 x 10 m", w = 10,000 N/m, and L = length = 4 m. This equation can be differentiated to yield the slope of the downward deflection as a function of x: dy (4x - 12L + 12L²X) 24EI dx If y = 0 at.x 0, use this equation with Euler's method (Ar = 0.125 m) to compute the deflection from.x 0 to L. Develop a plot of your results along with the analytical solution computed with the first equation. x= 0 x=L FIGURE P1.24 A cantilever beam.

Structural Analysis
6th Edition
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:KASSIMALI, Aslam.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

Provide solution in analytical method and also in numerical method please. And if you can graph then graph

1.24 As depicted in Fig. P1.24, the downward deflection y (m) of a
cantilever beam with a uniform load w (kg/m) can be computed as
-(x* – 4Lx° + 6L?x²)
24EI
where x = distance (m), E = the modulus of elasticity = 2 x 10"
Pa, I = moment of inertia = 3.25 x 10* m*, w = 10,000 N/m, and
L = length = 4 m. This equation can be differentiated to yield the
slope of the downward deflection as a function of x:
dy
(4x- 12Lr + 12Lx)
dx 24EI
If y = 0 at.x = 0, use this equation with Euler's method (Ar = 0.125 m)
to compute the deflection from.x 0 to L. Develop a plot of your results
along with the analytical solution computed with the first equation.
x= 0
x=L
FIGURE P1.24
A cantilever beam.
Transcribed Image Text:1.24 As depicted in Fig. P1.24, the downward deflection y (m) of a cantilever beam with a uniform load w (kg/m) can be computed as -(x* – 4Lx° + 6L?x²) 24EI where x = distance (m), E = the modulus of elasticity = 2 x 10" Pa, I = moment of inertia = 3.25 x 10* m*, w = 10,000 N/m, and L = length = 4 m. This equation can be differentiated to yield the slope of the downward deflection as a function of x: dy (4x- 12Lr + 12Lx) dx 24EI If y = 0 at.x = 0, use this equation with Euler's method (Ar = 0.125 m) to compute the deflection from.x 0 to L. Develop a plot of your results along with the analytical solution computed with the first equation. x= 0 x=L FIGURE P1.24 A cantilever beam.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Structural Analysis
Structural Analysis
Civil Engineering
ISBN:
9781337630931
Author:
KASSIMALI, Aslam.
Publisher:
Cengage,
Structural Analysis (10th Edition)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Sustainable Energy
Sustainable Energy
Civil Engineering
ISBN:
9781337551663
Author:
DUNLAP, Richard A.
Publisher:
Cengage,
Traffic and Highway Engineering
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning