1.24 As depicted in Fig. Pl.24, the downward deflection y (m) of a cantilever beam with a uniform load w (kg/m) can be computed as -(x* - 4Lx + 6Lr) 24EI where x = distance (m), E = the modulus of elasticity = 2 x 10" Pa, I = moment of inertia = 3.25 x 10 m", w = 10,000 N/m, and L = length = 4 m. This equation can be differentiated to yield the slope of the downward deflection as a function of x: dy (4x - 12L + 12L²X) 24EI dx If y = 0 at.x 0, use this equation with Euler's method (Ar = 0.125 m) to compute the deflection from.x 0 to L. Develop a plot of your results along with the analytical solution computed with the first equation. x= 0 x=L FIGURE P1.24 A cantilever beam.
1.24 As depicted in Fig. Pl.24, the downward deflection y (m) of a cantilever beam with a uniform load w (kg/m) can be computed as -(x* - 4Lx + 6Lr) 24EI where x = distance (m), E = the modulus of elasticity = 2 x 10" Pa, I = moment of inertia = 3.25 x 10 m", w = 10,000 N/m, and L = length = 4 m. This equation can be differentiated to yield the slope of the downward deflection as a function of x: dy (4x - 12L + 12L²X) 24EI dx If y = 0 at.x 0, use this equation with Euler's method (Ar = 0.125 m) to compute the deflection from.x 0 to L. Develop a plot of your results along with the analytical solution computed with the first equation. x= 0 x=L FIGURE P1.24 A cantilever beam.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
Related questions
Question
Provide solution in analytical method and also in numerical method please. And if you can graph then graph
![1.24 As depicted in Fig. P1.24, the downward deflection y (m) of a
cantilever beam with a uniform load w (kg/m) can be computed as
-(x* – 4Lx° + 6L?x²)
24EI
where x = distance (m), E = the modulus of elasticity = 2 x 10"
Pa, I = moment of inertia = 3.25 x 10* m*, w = 10,000 N/m, and
L = length = 4 m. This equation can be differentiated to yield the
slope of the downward deflection as a function of x:
dy
(4x- 12Lr + 12Lx)
dx 24EI
If y = 0 at.x = 0, use this equation with Euler's method (Ar = 0.125 m)
to compute the deflection from.x 0 to L. Develop a plot of your results
along with the analytical solution computed with the first equation.
x= 0
x=L
FIGURE P1.24
A cantilever beam.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F0a6a4272-9b12-4861-9171-a50c693b2372%2F209c7777-a758-4563-b5b9-00e580b892f8%2Fm9dls28_processed.jpeg&w=3840&q=75)
Transcribed Image Text:1.24 As depicted in Fig. P1.24, the downward deflection y (m) of a
cantilever beam with a uniform load w (kg/m) can be computed as
-(x* – 4Lx° + 6L?x²)
24EI
where x = distance (m), E = the modulus of elasticity = 2 x 10"
Pa, I = moment of inertia = 3.25 x 10* m*, w = 10,000 N/m, and
L = length = 4 m. This equation can be differentiated to yield the
slope of the downward deflection as a function of x:
dy
(4x- 12Lr + 12Lx)
dx 24EI
If y = 0 at.x = 0, use this equation with Euler's method (Ar = 0.125 m)
to compute the deflection from.x 0 to L. Develop a plot of your results
along with the analytical solution computed with the first equation.
x= 0
x=L
FIGURE P1.24
A cantilever beam.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Structural Analysis](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337630931/9781337630931_smallCoverImage.jpg)
![Structural Analysis (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134610672/9780134610672_smallCoverImage.gif)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Principles of Foundation Engineering (MindTap Cou…](https://www.bartleby.com/isbn_cover_images/9781337705028/9781337705028_smallCoverImage.gif)
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
![Structural Analysis](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337630931/9781337630931_smallCoverImage.jpg)
![Structural Analysis (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134610672/9780134610672_smallCoverImage.gif)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Principles of Foundation Engineering (MindTap Cou…](https://www.bartleby.com/isbn_cover_images/9781337705028/9781337705028_smallCoverImage.gif)
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
![Fundamentals of Structural Analysis](https://www.bartleby.com/isbn_cover_images/9780073398006/9780073398006_smallCoverImage.gif)
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
![Sustainable Energy](https://www.bartleby.com/isbn_cover_images/9781337551663/9781337551663_smallCoverImage.gif)
![Traffic and Highway Engineering](https://www.bartleby.com/isbn_cover_images/9781305156241/9781305156241_smallCoverImage.jpg)
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning