1. Write the polar form of z = 2. Write the Euler form of z = -1- i . -1- i . 3. Show z = = -1-i on the complex plane. 4. Express the function w(z) = z*/z in the form w(z) = u(x, y) + iv(x, y). 5. Find the three roots of z³ = 1. Values of some trigonometric functions of a real variable: Degrees Radians sine cos @ tan @ CSC@ sece cote 0° 30° 45° 60° T 322212 122232 0643 0 1 0 1 √3 2√3 2 33 3 3 1 √2 √2 1 √3 2√3 √3 √3 2 3 90° 1 0 1 0

Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter11: Topics From Analytic Geometry
Section: Chapter Questions
Problem 54RE
icon
Related questions
Question
1. Write the polar form of z =
2. Write the Euler form of z =
-1- i .
-1- i .
3. Show z = = -1-i on the complex plane.
4. Express the function w(z) = z*/z in the form w(z) = u(x, y) + iv(x, y).
5. Find the three roots of z³ = 1.
Values of some trigonometric functions of a real variable:
Degrees Radians sine
cos @
tan @ CSC@ sece
cote
0°
30°
45°
60°
T
322212
122232
0643
0
1
0
1
√3
2√3
2
33
3
3
1
√2
√2
1
√3
2√3
√3
√3
2
3
90°
1
0
1
0
Transcribed Image Text:1. Write the polar form of z = 2. Write the Euler form of z = -1- i . -1- i . 3. Show z = = -1-i on the complex plane. 4. Express the function w(z) = z*/z in the form w(z) = u(x, y) + iv(x, y). 5. Find the three roots of z³ = 1. Values of some trigonometric functions of a real variable: Degrees Radians sine cos @ tan @ CSC@ sece cote 0° 30° 45° 60° T 322212 122232 0643 0 1 0 1 √3 2√3 2 33 3 3 1 √2 √2 1 √3 2√3 √3 √3 2 3 90° 1 0 1 0
Expert Solution
steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning