1. The regular representation of a finite group G is a pair (Vreg, Dreg). Vreg is a vector space and Dreg is a homomorphism. (a) What is the dimension of Vreg? (b) Describe a basis for Vreg and give a formula for Dreg. Hence explain why the homo- morphism property is satisfied by Dreg. (c) Prove that the character ✗reg (g) defined by tr Dreg (g) is zero if g is not the identity element of the group. (d) A finite group of order 60 has five irreducible representations R1, R2, R3, R4, R5. R₁ is the trivial representation. R2, R3, R4 have dimensions (3,3,4) respectively. What is the dimension of R5? Explain how your solution is related to the decomposition of the regular representation as a direct sum of irreducible representations (You can assume without proof the properties of this decomposition which have been explained in class and in the lecture notes). (e) A group element has characters in the irreducible representations R2, R3, R4 given as R3 R2 (g) = -1 X³ (g) = −1 ; XR4 (g) = 0 Calculate XR5 (g), explaining your reasoning.
1. The regular representation of a finite group G is a pair (Vreg, Dreg). Vreg is a vector space and Dreg is a homomorphism. (a) What is the dimension of Vreg? (b) Describe a basis for Vreg and give a formula for Dreg. Hence explain why the homo- morphism property is satisfied by Dreg. (c) Prove that the character ✗reg (g) defined by tr Dreg (g) is zero if g is not the identity element of the group. (d) A finite group of order 60 has five irreducible representations R1, R2, R3, R4, R5. R₁ is the trivial representation. R2, R3, R4 have dimensions (3,3,4) respectively. What is the dimension of R5? Explain how your solution is related to the decomposition of the regular representation as a direct sum of irreducible representations (You can assume without proof the properties of this decomposition which have been explained in class and in the lecture notes). (e) A group element has characters in the irreducible representations R2, R3, R4 given as R3 R2 (g) = -1 X³ (g) = −1 ; XR4 (g) = 0 Calculate XR5 (g), explaining your reasoning.
Elements Of Modern Algebra
8th Edition
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Gilbert, Linda, Jimmie
Chapter4: More On Groups
Section4.6: Quotient Groups
Problem 11E: Find all homomorphic images of the quaternion group.
Related questions
Question

Transcribed Image Text:1. The regular representation of a finite group G is a pair (Vreg, Dreg). Vreg is a vector space
and Dreg is a homomorphism.
(a) What is the dimension of Vreg?
(b) Describe a basis for Vreg and give a formula for Dreg. Hence explain why the homo-
morphism property is satisfied by Dreg.
(c) Prove that the character ✗reg (g) defined by tr Dreg (g) is zero if g is not the identity
element of the group.
(d) A finite group of order 60 has five irreducible representations R1, R2, R3, R4, R5. R₁
is the trivial representation. R2, R3, R4 have dimensions (3,3,4) respectively. What is the
dimension of R5? Explain how your solution is related to the decomposition of the regular
representation as a direct sum of irreducible representations (You can assume without proof
the properties of this decomposition which have been explained in class and in the lecture
notes).
(e) A
group element
has characters in the irreducible representations R2, R3, R4 given
as
R3
R2 (g)
= -1
X³ (g) = −1 ; XR4 (g) = 0
Calculate XR5 (g), explaining your reasoning.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps

Recommended textbooks for you

Elements Of Modern Algebra
Algebra
ISBN:
9781285463230
Author:
Gilbert, Linda, Jimmie
Publisher:
Cengage Learning,

Elements Of Modern Algebra
Algebra
ISBN:
9781285463230
Author:
Gilbert, Linda, Jimmie
Publisher:
Cengage Learning,