1.) Suppose you're attempting to measure the density of a liquid that is highly volatile (it evaporates quickly). If you first measure the mass and then several minutes later you measure the volume of the liquid will the measured density be higher than the true value, lower than the true value, or the true density of the liquid. [It helps to understand this problem with the density equation.]

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question
Name (please print):
Fall 2022
Basic Laboratory Operations
Post Lab Questions
1.) Suppose you're attempting to measure the density of a liquid that is highly volatile (it evaporates
quickly). If you first measure the mass and then several minutes later you measure the volume of the
liquid will the measured density be higher than the true value, lower than the true value, or the true
density of the liquid. [It helps to understand this problem with the density equation.]
2.) Suppose you're attempting to measure the density of a liquid that is highly volatile (it evaporates
quickly). If you first measure the volume and then several minutes later you measure the mass of the
liquid will the measured density be higher than the true value, lower than the true value, or the true
density of the liquid. [It helps to understand this problem with the density equation.]
3.) You're attempting to calculate the density of an alloy. The alloy is in the shape of a cylinder. If the
mass of the alloy is 4.89×106 milligrams and it has a radius of 3.3meters with a height of
0.00856kilometers what is the density of the alloy in g/m³. [Vcylinder =r²h]
4.) Mass and weight are related via the equation W=mg on Earth. Mass is how much matter an object has
and weight is the measure of mass under a gravitational field (on Earth g =9.80m/s²). Suppose you go to
an unknown planet-X where the gravitational field of the planet is g'= 23.15m/s². Will a metal have a
higher, lower, or the same density on planet-X when compared to Earth. Assume the volume of the metal
doesn't change.
5.) Problem #4 on page 70(small numbers) 58(large numbers) from your lab manual.
Transcribed Image Text:Name (please print): Fall 2022 Basic Laboratory Operations Post Lab Questions 1.) Suppose you're attempting to measure the density of a liquid that is highly volatile (it evaporates quickly). If you first measure the mass and then several minutes later you measure the volume of the liquid will the measured density be higher than the true value, lower than the true value, or the true density of the liquid. [It helps to understand this problem with the density equation.] 2.) Suppose you're attempting to measure the density of a liquid that is highly volatile (it evaporates quickly). If you first measure the volume and then several minutes later you measure the mass of the liquid will the measured density be higher than the true value, lower than the true value, or the true density of the liquid. [It helps to understand this problem with the density equation.] 3.) You're attempting to calculate the density of an alloy. The alloy is in the shape of a cylinder. If the mass of the alloy is 4.89×106 milligrams and it has a radius of 3.3meters with a height of 0.00856kilometers what is the density of the alloy in g/m³. [Vcylinder =r²h] 4.) Mass and weight are related via the equation W=mg on Earth. Mass is how much matter an object has and weight is the measure of mass under a gravitational field (on Earth g =9.80m/s²). Suppose you go to an unknown planet-X where the gravitational field of the planet is g'= 23.15m/s². Will a metal have a higher, lower, or the same density on planet-X when compared to Earth. Assume the volume of the metal doesn't change. 5.) Problem #4 on page 70(small numbers) 58(large numbers) from your lab manual.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Concentration Terms
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY