1. Suppose that you have the following data below: Y 1 3 2 5 7 Using either the linear algebra or summation notation formula, find B and B, the OLS estimates of the model

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
1. Suppose that you have the following data below:

\[
\begin{array}{|c|c|}
\hline
Y & X \\
\hline
1 & 3 \\
2 & 5 \\
3 & 7 \\
\hline
\end{array}
\]

Using either the linear algebra or summation notation formula, find \(\widehat{\beta_0}\) and \(\widehat{\beta_1}\), the OLS estimates of the model.
Transcribed Image Text:1. Suppose that you have the following data below: \[ \begin{array}{|c|c|} \hline Y & X \\ \hline 1 & 3 \\ 2 & 5 \\ 3 & 7 \\ \hline \end{array} \] Using either the linear algebra or summation notation formula, find \(\widehat{\beta_0}\) and \(\widehat{\beta_1}\), the OLS estimates of the model.
**Model Estimation and Regression Analysis**

To estimate the specified model of reorders, we use the equation:

\[ \text{Reorders}_i = \hat{\beta}_0 + \hat{\beta}_1 \cdot \text{Products}_i + \hat{\beta}_2 \cdot \text{Days}_i \]

where:
- \(\text{Reorders}_i\) is the number of reorders.
- \(\text{Products}_i\) is the number of ordered products.
- \(\text{Days}_i\) is the number of days since the last order.

The regression analysis, conducted in Excel, provides the following output:

### Regression Statistics
- **Multiple R**: 0.8373
- **R Square**: 0.7010
- **Adjusted R Square**: 0.6998
- **Standard Error**: 3.1710
- **Observations**: 500

### ANOVA Table
- **Regression**
  - **df**: 2
  - **SS**: 11717.33
  - **MS**: 5858.67
- **Residual**
  - **df**: 497
  - **SS**: 4997.38
  - **MS**: 10.06
- **Total**
  - **df**: 499
  - **SS**: 16714.71
- **F**: 582.66
- **Significance F**: 0.00

### Coefficients
1. **Intercept**
   - Coefficient: 0.9778
   - Standard Error: 0.3416
   - t Stat: 2.8623
   - P-value: 0.0044
   - 95% Confidence Interval: [0.3066, 1.6489]

2. **Products**
   - Coefficient: 0.6333
   - Standard Error: 0.0188
   - t Stat: 33.6482
   - P-value: 0.0000
   - 95% Confidence Interval: [0.5963, 0.6703]

3. **Days Since Prior Order**
   - Coefficient: -0.0653
   - Standard Error: 0.0133
Transcribed Image Text:**Model Estimation and Regression Analysis** To estimate the specified model of reorders, we use the equation: \[ \text{Reorders}_i = \hat{\beta}_0 + \hat{\beta}_1 \cdot \text{Products}_i + \hat{\beta}_2 \cdot \text{Days}_i \] where: - \(\text{Reorders}_i\) is the number of reorders. - \(\text{Products}_i\) is the number of ordered products. - \(\text{Days}_i\) is the number of days since the last order. The regression analysis, conducted in Excel, provides the following output: ### Regression Statistics - **Multiple R**: 0.8373 - **R Square**: 0.7010 - **Adjusted R Square**: 0.6998 - **Standard Error**: 3.1710 - **Observations**: 500 ### ANOVA Table - **Regression** - **df**: 2 - **SS**: 11717.33 - **MS**: 5858.67 - **Residual** - **df**: 497 - **SS**: 4997.38 - **MS**: 10.06 - **Total** - **df**: 499 - **SS**: 16714.71 - **F**: 582.66 - **Significance F**: 0.00 ### Coefficients 1. **Intercept** - Coefficient: 0.9778 - Standard Error: 0.3416 - t Stat: 2.8623 - P-value: 0.0044 - 95% Confidence Interval: [0.3066, 1.6489] 2. **Products** - Coefficient: 0.6333 - Standard Error: 0.0188 - t Stat: 33.6482 - P-value: 0.0000 - 95% Confidence Interval: [0.5963, 0.6703] 3. **Days Since Prior Order** - Coefficient: -0.0653 - Standard Error: 0.0133
Expert Solution
Step 1

Solution

As per guidelines we answer the only first question

Statistics homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman