1. Let Y1,...,Yn * f(y; 0). For the following densities f, find: • the moment estimator of 0; • the MLE of 0; • the Fisher information I(0) = –nE ( log f(Yi; 0)); • the Cramer-Rao lower bound for an unbiased estimator of 0. (a) Poisson: f(y; 0) = 0" exp{=0} for y E {0, 1, 2, . } and 0 > 0. for y E {0, 1,2, ...} and 0 > 0.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
1. Let \( Y_1, \ldots, Y_n \overset{\text{iid}}{\sim} f(y; \theta) \). For the following densities \( f \), find:

- the moment estimator of \( \theta \);
- the MLE (Maximum Likelihood Estimator) of \( \theta \);
- the Fisher information \( I(\theta) = -n \mathbb{E} \left( \frac{d^2}{d\theta^2} \log f(Y_i; \theta) \right) \);
- the Cramer-Rao lower bound for an unbiased estimator of \( \theta \).

(a) Poisson: \( f(y; \theta) = \frac{\theta^y \exp\{-\theta\}}{y!} \) for \( y \in \{0, 1, 2, \ldots\} \) and \( \theta > 0 \).

(b) Bernoulli: \( f(y; \theta) = \theta^y (1 - \theta)^{1-y} \) for \( y \in \{0, 1\} \) and \( \theta \in (0, 1) \).

(c) Geometric: \( f(y; \theta) = \theta (1 - \theta)^{y-1} \) for \( y \in \{1, 2, \ldots\} \) and \( \theta \in (0, 1) \).

(d) Exponential: \( f(y; \theta) = \frac{1}{\theta} \exp \left\{-\frac{y}{\theta}\right\} \) for \( y > 0 \) and \( \theta > 0 \).
Transcribed Image Text:1. Let \( Y_1, \ldots, Y_n \overset{\text{iid}}{\sim} f(y; \theta) \). For the following densities \( f \), find: - the moment estimator of \( \theta \); - the MLE (Maximum Likelihood Estimator) of \( \theta \); - the Fisher information \( I(\theta) = -n \mathbb{E} \left( \frac{d^2}{d\theta^2} \log f(Y_i; \theta) \right) \); - the Cramer-Rao lower bound for an unbiased estimator of \( \theta \). (a) Poisson: \( f(y; \theta) = \frac{\theta^y \exp\{-\theta\}}{y!} \) for \( y \in \{0, 1, 2, \ldots\} \) and \( \theta > 0 \). (b) Bernoulli: \( f(y; \theta) = \theta^y (1 - \theta)^{1-y} \) for \( y \in \{0, 1\} \) and \( \theta \in (0, 1) \). (c) Geometric: \( f(y; \theta) = \theta (1 - \theta)^{y-1} \) for \( y \in \{1, 2, \ldots\} \) and \( \theta \in (0, 1) \). (d) Exponential: \( f(y; \theta) = \frac{1}{\theta} \exp \left\{-\frac{y}{\theta}\right\} \) for \( y > 0 \) and \( \theta > 0 \).
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman