1. Let m₁, m₂ € N and suppose that a, b = Z satisfy a = b (mod m₁) and a = b (mod m₂). Prove that, if ged(m₁, m₂) = 1, then a = b (mod m₁m₂). (Hint: translate the congruences to divisibilities and use Euclid's lemma.)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Problem 1
Let \( m_1, m_2 \in \mathbb{N} \) and suppose that \( a, b \in \mathbb{Z} \) satisfy \( a \equiv b \pmod{m_1} \) and \( a \equiv b \pmod{m_2} \). Prove that, if \( \gcd(m_1, m_2) = 1 \), then \( a \equiv b \pmod{m_1 m_2} \). (Hint: translate the congruences to divisibilities and use Euclid’s lemma.)
Transcribed Image Text:### Problem 1 Let \( m_1, m_2 \in \mathbb{N} \) and suppose that \( a, b \in \mathbb{Z} \) satisfy \( a \equiv b \pmod{m_1} \) and \( a \equiv b \pmod{m_2} \). Prove that, if \( \gcd(m_1, m_2) = 1 \), then \( a \equiv b \pmod{m_1 m_2} \). (Hint: translate the congruences to divisibilities and use Euclid’s lemma.)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,