1. Let G be a group. For any g E G and n = Z, we define if n > 0; g" = 99, n g • 9 |n| 9 if n = 0; if n < 0. Assuming the exponent laws for positive integer exponents, prove the following exponent laws for any integer exponents. (a) gngm = gn+m for all g € G and all n, m € Z. (b) (gn) m = gnm for all g G and all n, m € Z. (c) If g, h E G and gh = hg, then (gh)n = gnh" for all n € Z.
1. Let G be a group. For any g E G and n = Z, we define if n > 0; g" = 99, n g • 9 |n| 9 if n = 0; if n < 0. Assuming the exponent laws for positive integer exponents, prove the following exponent laws for any integer exponents. (a) gngm = gn+m for all g € G and all n, m € Z. (b) (gn) m = gnm for all g G and all n, m € Z. (c) If g, h E G and gh = hg, then (gh)n = gnh" for all n € Z.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
![1. Let G be a group. For any g E G and n = Z, we define
if n > 0;
gn=
=
9.9
1,
1
n
9
9,
-1
|n|
g
if n = 0;
if n < 0.
Assuming the exponent laws for positive integer exponents, prove the following
exponent laws for any integer exponents.
(a) gngm = gn+m for all g € G and all n, m € Z.
(b) (gn)m = gnm for all g E G and all n, m € Z.
(c) If g, h E G and gh = hg, then (gh)" = gnh" for all n € Z.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ff2e948f6-fd6f-485f-942e-c931230f8579%2F837abaeb-22f4-4ec3-82c3-9ae2aabae06e%2Fsh2hx6b_processed.jpeg&w=3840&q=75)
Transcribed Image Text:1. Let G be a group. For any g E G and n = Z, we define
if n > 0;
gn=
=
9.9
1,
1
n
9
9,
-1
|n|
g
if n = 0;
if n < 0.
Assuming the exponent laws for positive integer exponents, prove the following
exponent laws for any integer exponents.
(a) gngm = gn+m for all g € G and all n, m € Z.
(b) (gn)m = gnm for all g E G and all n, m € Z.
(c) If g, h E G and gh = hg, then (gh)" = gnh" for all n € Z.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)