1. Let f(a, b) = n X Y X² i=1 XY (ax₂ + b-yi)". = = || Y2 = 18 n IM³ IM³ IM³ IM- i=1 Xiyi. Show that f(a, b) can be written in the form z¹Qz 2cTz + d, where z = [a, b]T, Q = QT E R2X2, CER2 and dER, and find expressions for Q, c, and d in terms of X, Y, X², Y², XY.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Please answer this

Let \((x_1, y_1), \ldots, (x_n, y_n)\), \(n \geq 2\), be points on the \(\mathbb{R}^2\) plane (each \(x_i, y_i \in \mathbb{R}\)). We wish to find the straight line of "best fit" through these points ("best" in the sense that the average squared error is minimized); that is, we wish to find \(a, b \in \mathbb{R}\) to minimize

\[
f(a, b) = \frac{1}{n} \sum_{i=1}^{n} (ax_i + b - y_i)^2.
\]

1. Let
   \[
   \overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i
   \]
   \[
   \overline{Y} = \frac{1}{n} \sum_{i=1}^{n} y_i
   \]
   \[
   \overline{X^2} = \frac{1}{n} \sum_{i=1}^{n} x_i^2
   \]
   \[
   \overline{Y^2} = \frac{1}{n} \sum_{i=1}^{n} y_i^2
   \]
   \[
   \overline{XY} = \frac{1}{n} \sum_{i=1}^{n} x_i y_i
   \]

Show that \(f(a, b)\) can be written in the form \(z^T Q z - 2c^T z + d\), where \(z \equiv [a, b]^T\), \(Q = Q^T \in \mathbb{R}^{2 \times 2}\), \(c \in \mathbb{R}^2\) and \(d \in \mathbb{R}\), and find expressions for \(Q, c, and d\) in terms of \(\overline{X}, \overline{Y}, \overline{X^2}, \overline{Y^2}, \overline{XY}\).

2. Assume that the \(x_i\), \(i = 1, \ldots, n\
Transcribed Image Text:Let \((x_1, y_1), \ldots, (x_n, y_n)\), \(n \geq 2\), be points on the \(\mathbb{R}^2\) plane (each \(x_i, y_i \in \mathbb{R}\)). We wish to find the straight line of "best fit" through these points ("best" in the sense that the average squared error is minimized); that is, we wish to find \(a, b \in \mathbb{R}\) to minimize \[ f(a, b) = \frac{1}{n} \sum_{i=1}^{n} (ax_i + b - y_i)^2. \] 1. Let \[ \overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i \] \[ \overline{Y} = \frac{1}{n} \sum_{i=1}^{n} y_i \] \[ \overline{X^2} = \frac{1}{n} \sum_{i=1}^{n} x_i^2 \] \[ \overline{Y^2} = \frac{1}{n} \sum_{i=1}^{n} y_i^2 \] \[ \overline{XY} = \frac{1}{n} \sum_{i=1}^{n} x_i y_i \] Show that \(f(a, b)\) can be written in the form \(z^T Q z - 2c^T z + d\), where \(z \equiv [a, b]^T\), \(Q = Q^T \in \mathbb{R}^{2 \times 2}\), \(c \in \mathbb{R}^2\) and \(d \in \mathbb{R}\), and find expressions for \(Q, c, and d\) in terms of \(\overline{X}, \overline{Y}, \overline{X^2}, \overline{Y^2}, \overline{XY}\). 2. Assume that the \(x_i\), \(i = 1, \ldots, n\
Expert Solution
Step 1: Step 1

Note: “Since you have posted multiple questions, we will provide the solution only to the first question as per our Q&A guidelines. Please repost the remaining questions separately.”


Given f(a,b)=1/ni=1n(axi+byi)2

=1/ni=1n(a2xi2+b2+yi2+2abxi2axiyi2byi)

=1/ni=1na2xi2+1/ni=1nb2+1/ni=1nyi2+1/ni=1n2abxi1/ni=1n2axiyi1/ni=1n2byi=a2(1/n)i=1nxi2+b2(1/n)i=1n+1/ni=1nyi2+2ab(1/n)i=1nxi2a(1/n)i=1nxiyi2b(1/n)i=1nyi=a2X2¯+b2+Y2¯+2abX¯2aXY¯2bY¯

steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,