1. Let B₁ = = {-1} {[]} i) Find Rep ii) Find Rep B1 and -{[]} B2 = be two ordered bases for R² C E-path] [ ī

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
1. Let \( B_1 = \left\{ \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \end{bmatrix} \right\} \) and \( B_2 = \left\{ \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \end{bmatrix} \right\} \) be two ordered bases for \( \mathbb{R}^2 \).

i) Find \( \text{Rep}_{B_2}^{B_1} \)

ii) Find \( \text{Rep}_{B_1}^{B_2} \)

\[ \begin{bmatrix} 0 & 0 \\ c & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & c \\ 6 & 6 \end{bmatrix} \begin{bmatrix} a & b \\ a & a \end{bmatrix} \begin{bmatrix} b & d \\ b & b \end{bmatrix} \]
Transcribed Image Text:1. Let \( B_1 = \left\{ \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \end{bmatrix} \right\} \) and \( B_2 = \left\{ \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \end{bmatrix} \right\} \) be two ordered bases for \( \mathbb{R}^2 \). i) Find \( \text{Rep}_{B_2}^{B_1} \) ii) Find \( \text{Rep}_{B_1}^{B_2} \) \[ \begin{bmatrix} 0 & 0 \\ c & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & c \\ 6 & 6 \end{bmatrix} \begin{bmatrix} a & b \\ a & a \end{bmatrix} \begin{bmatrix} b & d \\ b & b \end{bmatrix} \]
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,