4. Let T: R2 → R² be defined by T = {B.[4]). and B₁ = -x y X- ([])=[ + ][²] = {[1].8]} BVB RUE BUE TOCHR be two ordered bases for R2 T (v) [X112 i) Find [7] B ii) Find [7] B and B2 = Ran B₂ [21

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem Statement: Transformation and Bases in \(\mathbb{R}^2\)**

Let \( T: \mathbb{R}^2 \to \mathbb{R}^2 \) be defined by

\[ T = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x + y \\ x - y \end{pmatrix} \]

Additionally, consider the ordered bases:

\[ B_1 = \left\{ \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \end{bmatrix} \right\} \]

\[ B_2 = \left\{ \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \end{bmatrix} \right\} \]

These are bases for \(\mathbb{R}^2\).

**Tasks:**

i) Find the matrix \([T]_{B_2}^{B_1}\).

ii) Find the matrix \([T]_{B_1}^{B_2}\).
Transcribed Image Text:**Problem Statement: Transformation and Bases in \(\mathbb{R}^2\)** Let \( T: \mathbb{R}^2 \to \mathbb{R}^2 \) be defined by \[ T = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x + y \\ x - y \end{pmatrix} \] Additionally, consider the ordered bases: \[ B_1 = \left\{ \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \end{bmatrix} \right\} \] \[ B_2 = \left\{ \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \end{bmatrix} \right\} \] These are bases for \(\mathbb{R}^2\). **Tasks:** i) Find the matrix \([T]_{B_2}^{B_1}\). ii) Find the matrix \([T]_{B_1}^{B_2}\).
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,