1. If L{f(t)} = F(s) then L{f""(t)} is, A) s²F(s)- sf (0) - f'(0) s²F(s)-sf'(0) - f (0) B) s³ F(s) D) s³ F(s) s² f(0) - sf'(0) - f"(0) sf'(0) - f (0)
1. If L{f(t)} = F(s) then L{f""(t)} is, A) s²F(s)- sf (0) - f'(0) s²F(s)-sf'(0) - f (0) B) s³ F(s) D) s³ F(s) s² f(0) - sf'(0) - f"(0) sf'(0) - f (0)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![1. If L{f(t)} = F(s) then L{f""(t)} is,
A) s²F(s) sf (0) - f'(0)
B) s²F(s)-sf'(0) - f (0)
A)
B)
Statement I only
Statement II only
2. Which of the following statements is/are true?
I. The Laplace transform of y(V) is s4L(y) - s³y(0) - s²y' (0) - sy" (0) - y'" (0).
II. When solved using Laplace transforms, a higher order linear ODE with constant coefficients
with available initial conditions yields a general solution.
C
A) F(s) =
B) F(s) =
D)
-s +3
1
+
(s²2s1) s(s² - 2s-1)
1
s(s²2s1)
C)
D)
s³ F(s) - s² f(0) - sf'(0) - f"(0)
s³ F(s) - sf'(0) - f (0)
3. What is the Laplace transform of the differential equation and initial value conditions given below?
y" - 2y' - y = 1;
y(0) = -1;
y'(0) = 1
Both statements
None of the choices.
C) F (s)
D) F(s)
C)
D)
=
=
s+1
(s²2s1)
1
(s²2s-1)
4. Which of the following initial value problem satisfy the given Laplace
transform
A) y" + y = 0; y(0) = 1; y'(0) = 0
B) y"+y=0; y(0) = 0; y'(0) = 1
+
1
s(s²2s1)
L{f(t)}
y" + y = 1; y(0) = 0; y'(0) = 0
y" + y = 1; y(0) = 0; y' (0) = 1
1
s² + 1
?](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd2180800-2ceb-40c5-ac01-b9cac3b491ab%2Fe068ffac-a34d-4588-b678-fc0c0949effc%2Fa4344cp_processed.jpeg&w=3840&q=75)
Transcribed Image Text:1. If L{f(t)} = F(s) then L{f""(t)} is,
A) s²F(s) sf (0) - f'(0)
B) s²F(s)-sf'(0) - f (0)
A)
B)
Statement I only
Statement II only
2. Which of the following statements is/are true?
I. The Laplace transform of y(V) is s4L(y) - s³y(0) - s²y' (0) - sy" (0) - y'" (0).
II. When solved using Laplace transforms, a higher order linear ODE with constant coefficients
with available initial conditions yields a general solution.
C
A) F(s) =
B) F(s) =
D)
-s +3
1
+
(s²2s1) s(s² - 2s-1)
1
s(s²2s1)
C)
D)
s³ F(s) - s² f(0) - sf'(0) - f"(0)
s³ F(s) - sf'(0) - f (0)
3. What is the Laplace transform of the differential equation and initial value conditions given below?
y" - 2y' - y = 1;
y(0) = -1;
y'(0) = 1
Both statements
None of the choices.
C) F (s)
D) F(s)
C)
D)
=
=
s+1
(s²2s1)
1
(s²2s-1)
4. Which of the following initial value problem satisfy the given Laplace
transform
A) y" + y = 0; y(0) = 1; y'(0) = 0
B) y"+y=0; y(0) = 0; y'(0) = 1
+
1
s(s²2s1)
L{f(t)}
y" + y = 1; y(0) = 0; y'(0) = 0
y" + y = 1; y(0) = 0; y' (0) = 1
1
s² + 1
?
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)