1. Give an example of a function f N N which is injective but not surjective.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Exercise 1: Functions**
**Task:** Give an example of a function \( f : \mathbb{N} \to \mathbb{N} \) which is injective but not surjective.
### Explanation
- **Injective Function (One-to-One):** A function \( f \) is injective if different elements in the domain map to different elements in the codomain. Formally, \( f(a) = f(b) \) implies \( a = b \).
- **Surjective Function (Onto):** A function \( f \) is surjective if every element in the codomain has a pre-image in the domain. There are no elements in the codomain left unmapped.
**Example Solution:**
Consider the function \( f(n) = n + 1 \).
- **Injectivity:** If \( f(a) = f(b) \), then \( a + 1 = b + 1 \), which implies \( a = b \). Therefore, \( f \) is injective.
- **Not Surjective:** The element 0 in the codomain \(\mathbb{N}\) (if we include 0 in natural numbers) does not have a pre-image, as no natural number \( n \) satisfies \( n + 1 = 0 \). Thus, \( f \) is not surjective.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F341515a7-9f2b-49dc-a023-366552e2ebc5%2F4b9cf71b-7c5c-440b-9a1c-22471a81bb4c%2F5xrlgv_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Exercise 1: Functions**
**Task:** Give an example of a function \( f : \mathbb{N} \to \mathbb{N} \) which is injective but not surjective.
### Explanation
- **Injective Function (One-to-One):** A function \( f \) is injective if different elements in the domain map to different elements in the codomain. Formally, \( f(a) = f(b) \) implies \( a = b \).
- **Surjective Function (Onto):** A function \( f \) is surjective if every element in the codomain has a pre-image in the domain. There are no elements in the codomain left unmapped.
**Example Solution:**
Consider the function \( f(n) = n + 1 \).
- **Injectivity:** If \( f(a) = f(b) \), then \( a + 1 = b + 1 \), which implies \( a = b \). Therefore, \( f \) is injective.
- **Not Surjective:** The element 0 in the codomain \(\mathbb{N}\) (if we include 0 in natural numbers) does not have a pre-image, as no natural number \( n \) satisfies \( n + 1 = 0 \). Thus, \( f \) is not surjective.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)