1. Find the first four nonzero terms in the MacLaurin series for the function f(x) = e-² DA. 1 + x² + OB. 1+ 22 + OC. none of these OD. 1-² + DE.-x²-x³-22 ++ 24 x6 2 3! - - 26 3!

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem Statement:**

1. Find the first four nonzero terms in the Maclaurin series for the function \( f(x) = e^{-x^2} \).

**Options:**

- **A.** \( 1 + x^2 + \frac{x^4}{2} + \frac{x^6}{3!} \)

- **B.** \( 1 + \frac{x^2}{2} + \frac{x^4}{4!} + \frac{x^6}{6!} \)

- **C.** none of these

- **D.** \( 1 - x^2 + \frac{x^4}{2} - \frac{x^6}{3!} \)

- **E.** \( -x^2 - x^3 - \frac{x^4}{2} - \frac{x^6}{3!} \)

**Explanation:**

To solve this problem, we use the Maclaurin series expansion formula. The Maclaurin series for \( e^x \) is given by:

\[ e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \]

For \( f(x) = e^{-x^2} \), we replace \( x \) with \(-x^2\):

\[ e^{-x^2} = 1 + (-x^2) + \frac{(-x^2)^2}{2!} + \frac{(-x^2)^3}{3!} + \cdots \]

Thus, the first four nonzero terms are:

1. \( 1 \)
2. \( -x^2 \)
3. \( \frac{x^4}{2} \)
4. \( -\frac{x^6}{3!} \)

The correct answer is **D.** \( 1 - x^2 + \frac{x^4}{2} - \frac{x^6}{3!} \).
Transcribed Image Text:**Problem Statement:** 1. Find the first four nonzero terms in the Maclaurin series for the function \( f(x) = e^{-x^2} \). **Options:** - **A.** \( 1 + x^2 + \frac{x^4}{2} + \frac{x^6}{3!} \) - **B.** \( 1 + \frac{x^2}{2} + \frac{x^4}{4!} + \frac{x^6}{6!} \) - **C.** none of these - **D.** \( 1 - x^2 + \frac{x^4}{2} - \frac{x^6}{3!} \) - **E.** \( -x^2 - x^3 - \frac{x^4}{2} - \frac{x^6}{3!} \) **Explanation:** To solve this problem, we use the Maclaurin series expansion formula. The Maclaurin series for \( e^x \) is given by: \[ e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \] For \( f(x) = e^{-x^2} \), we replace \( x \) with \(-x^2\): \[ e^{-x^2} = 1 + (-x^2) + \frac{(-x^2)^2}{2!} + \frac{(-x^2)^3}{3!} + \cdots \] Thus, the first four nonzero terms are: 1. \( 1 \) 2. \( -x^2 \) 3. \( \frac{x^4}{2} \) 4. \( -\frac{x^6}{3!} \) The correct answer is **D.** \( 1 - x^2 + \frac{x^4}{2} - \frac{x^6}{3!} \).
Expert Solution
steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,