1. Considering the following graph of f(x). + -2- 0 -2 4 6 i. Circle the interval(s) where f'(x) is positive. a) (-infinity, 0), (2, 4) c) (1, 3), (4, 4.5) b) (-infinity, 1), (3, 4.5) d) (3,2), (2,5) ii. Circle the interval(s) where f'(x) is negative. a) (0, 1), (4.5, 6) b) (0, 2), (4, 4.5), (4.5, 6) c) (-infinity, 1), (3, 4.5), (5, 6) d) (-infinity, -3), (4.5, 6) iii. Circle the interval(s) where f "(x) is positive. a) (-infinity, 0), (2, 4) c) (1, 3), (4, 4.5) b) (-infinity, 1), (3, 4.5) d) (3,2), (2,5) iv. Circle the interval(s) where f "(x) is negative. a) (-infinity, -3), (4.5, 6) b) (0, 2), (4, 4.5), (4.5, 6) c) (-infinity, 1), (3, 4.5), (5, 6) d) (-infinity, -3), (4.5, 6) v. Which x value(s) correspond to absolute maximums. a) 0 c) 0 & 4 b) 4 vi. Which x value(s) correspond to local minimums. a) -infinity b) 2 c) 6 2. At a local maximum point f'(x) = 0. a) always b) sometimes 3. If f'(x) = 0, then the point (x, f(x)) is an extreme point. a) always b) sometimes 4. If f'(x) = 0 and f "(x) <0, then the point (x, f(x)) is a local minimum. a) always b) sometimes 5. The impact velocity given the height function h(t) = -5t² + 30t. a) 0 b) -10 c) -30 6. The acceleration of the position function s(t) = 4t² - 8t+2 when t = 7. a) 7 b) 48 c) 142 d) None d) 2 & 6 c) never c) never c) never d) 3 d) 8
1. Considering the following graph of f(x). + -2- 0 -2 4 6 i. Circle the interval(s) where f'(x) is positive. a) (-infinity, 0), (2, 4) c) (1, 3), (4, 4.5) b) (-infinity, 1), (3, 4.5) d) (3,2), (2,5) ii. Circle the interval(s) where f'(x) is negative. a) (0, 1), (4.5, 6) b) (0, 2), (4, 4.5), (4.5, 6) c) (-infinity, 1), (3, 4.5), (5, 6) d) (-infinity, -3), (4.5, 6) iii. Circle the interval(s) where f "(x) is positive. a) (-infinity, 0), (2, 4) c) (1, 3), (4, 4.5) b) (-infinity, 1), (3, 4.5) d) (3,2), (2,5) iv. Circle the interval(s) where f "(x) is negative. a) (-infinity, -3), (4.5, 6) b) (0, 2), (4, 4.5), (4.5, 6) c) (-infinity, 1), (3, 4.5), (5, 6) d) (-infinity, -3), (4.5, 6) v. Which x value(s) correspond to absolute maximums. a) 0 c) 0 & 4 b) 4 vi. Which x value(s) correspond to local minimums. a) -infinity b) 2 c) 6 2. At a local maximum point f'(x) = 0. a) always b) sometimes 3. If f'(x) = 0, then the point (x, f(x)) is an extreme point. a) always b) sometimes 4. If f'(x) = 0 and f "(x) <0, then the point (x, f(x)) is a local minimum. a) always b) sometimes 5. The impact velocity given the height function h(t) = -5t² + 30t. a) 0 b) -10 c) -30 6. The acceleration of the position function s(t) = 4t² - 8t+2 when t = 7. a) 7 b) 48 c) 142 d) None d) 2 & 6 c) never c) never c) never d) 3 d) 8
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
![1. Considering the following graph of f(x).
+
-2-
0
-2
4
6
i. Circle the interval(s) where f'(x) is positive.
a) (-infinity, 0), (2, 4)
c) (1, 3), (4, 4.5)
b) (-infinity, 1), (3, 4.5)
d) (3,2), (2,5)
ii. Circle the interval(s) where f'(x) is negative.
a) (0, 1), (4.5, 6)
b) (0, 2), (4, 4.5), (4.5, 6)
c) (-infinity, 1), (3, 4.5), (5, 6)
d) (-infinity, -3), (4.5, 6)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fdf41df8f-e300-4854-aaa2-c9c3c769a22c%2F7049d378-2c11-43cd-ba9a-44a24febbcdd%2Fci4xip6_processed.png&w=3840&q=75)
Transcribed Image Text:1. Considering the following graph of f(x).
+
-2-
0
-2
4
6
i. Circle the interval(s) where f'(x) is positive.
a) (-infinity, 0), (2, 4)
c) (1, 3), (4, 4.5)
b) (-infinity, 1), (3, 4.5)
d) (3,2), (2,5)
ii. Circle the interval(s) where f'(x) is negative.
a) (0, 1), (4.5, 6)
b) (0, 2), (4, 4.5), (4.5, 6)
c) (-infinity, 1), (3, 4.5), (5, 6)
d) (-infinity, -3), (4.5, 6)
![iii. Circle the interval(s) where f "(x) is positive.
a) (-infinity, 0), (2, 4)
c) (1, 3), (4, 4.5)
b) (-infinity, 1), (3, 4.5)
d) (3,2), (2,5)
iv. Circle the interval(s) where f "(x) is negative.
a) (-infinity, -3), (4.5, 6)
b) (0, 2), (4, 4.5), (4.5, 6)
c) (-infinity, 1), (3, 4.5), (5, 6)
d) (-infinity, -3), (4.5, 6)
v. Which x value(s) correspond to absolute maximums.
a) 0
c) 0 & 4
b) 4
vi. Which x value(s) correspond to local minimums.
a) -infinity
b) 2
c) 6
2. At a local maximum point f'(x) = 0.
a) always
b) sometimes
3. If f'(x) = 0, then the point (x, f(x)) is an extreme point.
a) always
b) sometimes
4. If f'(x) = 0 and f "(x) <0, then the point (x, f(x)) is a local minimum.
a) always
b) sometimes
5. The impact velocity given the height function h(t) = -5t² + 30t.
a) 0
b) -10
c) -30
6. The acceleration of the position function s(t) = 4t² - 8t+2 when t = 7.
a) 7
b) 48
c) 142
d) None
d) 2 & 6
c) never
c) never
c) never
d) 3
d) 8](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fdf41df8f-e300-4854-aaa2-c9c3c769a22c%2F7049d378-2c11-43cd-ba9a-44a24febbcdd%2Fowp12mp_processed.png&w=3840&q=75)
Transcribed Image Text:iii. Circle the interval(s) where f "(x) is positive.
a) (-infinity, 0), (2, 4)
c) (1, 3), (4, 4.5)
b) (-infinity, 1), (3, 4.5)
d) (3,2), (2,5)
iv. Circle the interval(s) where f "(x) is negative.
a) (-infinity, -3), (4.5, 6)
b) (0, 2), (4, 4.5), (4.5, 6)
c) (-infinity, 1), (3, 4.5), (5, 6)
d) (-infinity, -3), (4.5, 6)
v. Which x value(s) correspond to absolute maximums.
a) 0
c) 0 & 4
b) 4
vi. Which x value(s) correspond to local minimums.
a) -infinity
b) 2
c) 6
2. At a local maximum point f'(x) = 0.
a) always
b) sometimes
3. If f'(x) = 0, then the point (x, f(x)) is an extreme point.
a) always
b) sometimes
4. If f'(x) = 0 and f "(x) <0, then the point (x, f(x)) is a local minimum.
a) always
b) sometimes
5. The impact velocity given the height function h(t) = -5t² + 30t.
a) 0
b) -10
c) -30
6. The acceleration of the position function s(t) = 4t² - 8t+2 when t = 7.
a) 7
b) 48
c) 142
d) None
d) 2 & 6
c) never
c) never
c) never
d) 3
d) 8
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 9 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Organic Chemistry](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
![Chemistry: Principles and Reactions](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
![Elementary Principles of Chemical Processes, Bind…](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY