1. a. Explain the terms (i) steam economy (ii) vapour recompression. b. A single-effect evaporator is being used to concentrate 10,000 kg/h of tomato juice from 5% total solids to 30% total solids. The juice enters the evaporator at 15°C. The evaporator is operated with steam (80% quality) at 143.27 kPa. The vacuum inside the evaporator allows the juice to boil at 75°C. Calculate (a) the steam requirements and (b) steam economy for the process. Assume the condensate is discharged at 75°C. The specific heat of the liquid feed is 4.1kJ/(kg°C) and the concentrated product is 3.1kJ/(kg°C).

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
1. a. Explain the terms (i) steam economy (ii) vapour recompression.
b. A single-effect evaporator is being used to concentrate 10,000 kg/h of
tomato juice from 5% total solids to 30% total solids. The juice enters the
evaporator at 15°C. The evaporator is operated with steam (80% quality) at
143.27 kPa. The vacuum inside the evaporator allows the juice to boil at 75°C.
Calculate (a) the steam requirements and (b) steam economy for the process.
Assume the condensate is discharged at 75°C. The specific heat of the liquid
feed is 4.1kJ/(kg°C) and the concentrated product is 3.1kJ/(kg°C).
Transcribed Image Text:1. a. Explain the terms (i) steam economy (ii) vapour recompression. b. A single-effect evaporator is being used to concentrate 10,000 kg/h of tomato juice from 5% total solids to 30% total solids. The juice enters the evaporator at 15°C. The evaporator is operated with steam (80% quality) at 143.27 kPa. The vacuum inside the evaporator allows the juice to boil at 75°C. Calculate (a) the steam requirements and (b) steam economy for the process. Assume the condensate is discharged at 75°C. The specific heat of the liquid feed is 4.1kJ/(kg°C) and the concentrated product is 3.1kJ/(kg°C).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 7 steps with 12 images

Blurred answer
Knowledge Booster
Properties of mixture
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The