1 When A is invertible, MATLAB finds A by factoring LU (where L may be permuted lower triangular), inverting L and U, and then computing U¹L1. Use this method to compute the inverse of the given matrix A. 2 -6 2 A = - 10 28 - 6 0-2 2 Compute U¹ and L¯1. U-1 L-1 : = " where A = 100 - 5 10 0 1 1 2-6 - 2 O 0 N 4 0 -2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Hello there, can you help me solve a problem with subparts? Thanks!

Compute \( A^{-1} \).

\( A^{-1} = \boxed{\phantom{0}} \)
Transcribed Image Text:Compute \( A^{-1} \). \( A^{-1} = \boxed{\phantom{0}} \)
**LU Factorization and Matrix Inversion Method**

When A is invertible, MATLAB finds \( A^{-1} \) by factoring LU (where L may be permuted lower triangular), inverting L and U, and then computing \( U^{-1} L^{-1} \). Use this method to compute the inverse of the given matrix A.

Matrix \( A \) is given by:

\[
A = 
\begin{bmatrix}
2 & -6 & 2 \\
-10 & 28 & -6 \\
0 & -2 & 2
\end{bmatrix}
\]

This is expressed as a product of matrices:

\[
A = 
\begin{bmatrix}
1 & 0 & 0 \\
-5 & 1 & 0 \\
0 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
2 & -6 & 2 \\
0 & -2 & 4 \\
0 & 0 & -2
\end{bmatrix}
\]

**Task:**

Compute \( U^{-1} \) and \( L^{-1} \).

- \( U^{-1} = \boxed{} \)
- \( L^{-1} = \boxed{} \)

**Explanation:**

The above matrices demonstrate LU decomposition where:
- L is a lower triangular matrix.
- U is an upper triangular matrix.

To find the inverse of matrix A, calculate the inverses of L and U separately and then multiply \( U^{-1} \) by \( L^{-1} \).
Transcribed Image Text:**LU Factorization and Matrix Inversion Method** When A is invertible, MATLAB finds \( A^{-1} \) by factoring LU (where L may be permuted lower triangular), inverting L and U, and then computing \( U^{-1} L^{-1} \). Use this method to compute the inverse of the given matrix A. Matrix \( A \) is given by: \[ A = \begin{bmatrix} 2 & -6 & 2 \\ -10 & 28 & -6 \\ 0 & -2 & 2 \end{bmatrix} \] This is expressed as a product of matrices: \[ A = \begin{bmatrix} 1 & 0 & 0 \\ -5 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -6 & 2 \\ 0 & -2 & 4 \\ 0 & 0 & -2 \end{bmatrix} \] **Task:** Compute \( U^{-1} \) and \( L^{-1} \). - \( U^{-1} = \boxed{} \) - \( L^{-1} = \boxed{} \) **Explanation:** The above matrices demonstrate LU decomposition where: - L is a lower triangular matrix. - U is an upper triangular matrix. To find the inverse of matrix A, calculate the inverses of L and U separately and then multiply \( U^{-1} \) by \( L^{-1} \).
Expert Solution
Step 1: Explanation

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,