1 Si 1+z2 da is convergent because 1+z² Jhry sin x and ₁ sin² x dx is convergent. sin² 2.₁ side is convergent because ≤ 1 and 2 do is convergent. sin² x 1+x2 1+2 a 3. So sin da is convergent because in and da is convergent. < 4. Sin da is divergent because in and fd is divergent. 21 1+x² 1+x²

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Integral Convergence Assessment

In this exercise, the convergence of the improper integral 

\[
\int_{1}^{\infty} \frac{\sin^2{x}}{1+x^2} \, dx
\]

is analyzed under different conditions to determine whether it converges or diverges. 

1. **Option 1**
   \[
   \int_{1}^{\infty} \frac{\sin^2{x}}{1+x^2} \, dx \text{ is convergent because } \frac{\sin^2{x}}{1+x^2} \leq \sin^2{x} \text{ and } \int_{1}^{\infty} \sin^2{x} \, dx \text{ is convergent.}
   \]

2. **Option 2**
   \[
   \int_{1}^{\infty} \frac{\sin^2{x}}{1+x^2} \, dx \text{ is convergent because } \frac{\sin^2{x}}{1+x^2} \leq \frac{1}{1+x^2} \text{ and } \int_{1}^{\infty} \frac{1}{1+x^2} \, dx \text{ is convergent.}
   \]

3. **Option 3**
   \[
   \int_{1}^{\infty} \frac{\sin^2{x}}{1+x^2} \, dx \text{ is convergent because } \frac{\sin^2{x}}{1+x^2} \leq \frac{1}{x^2} \text{ and } \int_{1}^{\infty} \frac{1}{x^2} \, dx \text{ is convergent.}
   \]

4. **Option 4**
   \[
   \int_{1}^{\infty} \frac{\sin^2{x}}{1+x^2} \, dx \text{ is divergent because } \frac{\sin^2{x}}{1+x^2} \geq \frac{1}{1+x^2} \text{ and } \int_{1}^{\infty} \frac{1}{1+x^2} \, dx \text{ is divergent.}
   \]

**Analysis:**

- To determine the
Transcribed Image Text:### Integral Convergence Assessment In this exercise, the convergence of the improper integral \[ \int_{1}^{\infty} \frac{\sin^2{x}}{1+x^2} \, dx \] is analyzed under different conditions to determine whether it converges or diverges. 1. **Option 1** \[ \int_{1}^{\infty} \frac{\sin^2{x}}{1+x^2} \, dx \text{ is convergent because } \frac{\sin^2{x}}{1+x^2} \leq \sin^2{x} \text{ and } \int_{1}^{\infty} \sin^2{x} \, dx \text{ is convergent.} \] 2. **Option 2** \[ \int_{1}^{\infty} \frac{\sin^2{x}}{1+x^2} \, dx \text{ is convergent because } \frac{\sin^2{x}}{1+x^2} \leq \frac{1}{1+x^2} \text{ and } \int_{1}^{\infty} \frac{1}{1+x^2} \, dx \text{ is convergent.} \] 3. **Option 3** \[ \int_{1}^{\infty} \frac{\sin^2{x}}{1+x^2} \, dx \text{ is convergent because } \frac{\sin^2{x}}{1+x^2} \leq \frac{1}{x^2} \text{ and } \int_{1}^{\infty} \frac{1}{x^2} \, dx \text{ is convergent.} \] 4. **Option 4** \[ \int_{1}^{\infty} \frac{\sin^2{x}}{1+x^2} \, dx \text{ is divergent because } \frac{\sin^2{x}}{1+x^2} \geq \frac{1}{1+x^2} \text{ and } \int_{1}^{\infty} \frac{1}{1+x^2} \, dx \text{ is divergent.} \] **Analysis:** - To determine the
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning