(1) Prove whether or not the number 12.34. 000 2000 30000 40 100 2000 30000 40 100 2000 300004... is rational or irrational 2 sowe two equations: 1. | cos x| = = cos x +1 2. (=—=— (e²*-e²¹³))² + (± (e¹ + e^i^))² = ex

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question
Prove whether or not the number 1234. 000 2000 30000 40 100 2000 30000 40 100 2000 300004... is rational or irrational.
(2) sowe two equations:
1. | cos x| = cos x +1
2. (=— (e²*-e`¯²x))² + ( ± (e¹* + e²^x))² = ex
2i
(3) Find
3. Find functions
$[4(x)]
* $(x)]
if $(x)= exp(x)
y (x)= lnx
(4) Find the regions of definition of the following functions:
f(x)= √arccos (Inx)
f(x)= log₂ (In (logs))
I
1
f(x) = √2/2² + 2ªrcos *x + √√x+0.5
f(x)
sin (cosx) t arecos
(1+x)
२४
Transcribed Image Text:Prove whether or not the number 1234. 000 2000 30000 40 100 2000 30000 40 100 2000 300004... is rational or irrational. (2) sowe two equations: 1. | cos x| = cos x +1 2. (=— (e²*-e`¯²x))² + ( ± (e¹* + e²^x))² = ex 2i (3) Find 3. Find functions $[4(x)] * $(x)] if $(x)= exp(x) y (x)= lnx (4) Find the regions of definition of the following functions: f(x)= √arccos (Inx) f(x)= log₂ (In (logs)) I 1 f(x) = √2/2² + 2ªrcos *x + √√x+0.5 f(x) sin (cosx) t arecos (1+x) २४
Expert Solution
steps

Step by step

Solved in 3 steps with 11 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,