10. Show that there is a root of cos(x): = in the interval (0,7). TT Do NOT find the root. Explain all of your steps and reasoning, and name any theorems used.
10. Show that there is a root of cos(x): = in the interval (0,7). TT Do NOT find the root. Explain all of your steps and reasoning, and name any theorems used.
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![---
**Mathematics Problem Solving**
**Problem: Root of the Cosine Function**
**Task**:
Show that there is a root of \( \cos(x) = \frac{x}{\pi} \) in the interval \( \left(0, \frac{\pi}{2}\right) \).
**Instructions**:
Do NOT find the root. Explain all of your steps and reasoning, and name any theorems used.
---
**Solution Guide**:
To show that there is a root of \( \cos(x) = \frac{x}{\pi} \) in the interval \( \left(0, \frac{\pi}{2}\right) \), we can use the **Intermediate Value Theorem** (IVT).
**Step-by-Step Reasoning**:
1. **Define the Function**:
Let \( f(x) = \cos(x) - \frac{x}{\pi} \).
2. **Analyze the Endpoints of the Interval**:
- At \( x = 0 \):
\[ f(0) = \cos(0) - \frac{0}{\pi} = 1 - 0 = 1. \]
- At \( x = \frac{\pi}{2} \):
\[ f\left(\frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2}\right) - \frac{\frac{\pi}{2}}{\pi} = 0 - \frac{1}{2} = -\frac{1}{2}. \]
3. **Apply the Intermediate Value Theorem (IVT)**:
- **IVT Statement**:
If \( f \) is continuous on the interval \([a, b]\) and \( f(a) \) and \( f(b) \) have opposite signs, then there exists at least one \( c \) in the interval \((a, b)\) such that \( f(c) = 0 \).
- **Check Continuity**:
The function \( f(x) = \cos(x) - \frac{x}{\pi} \) is continuous on \( \left[0, \frac{\pi}{2}\right] \) because both \( \cos(x) \) and \( \frac{x}{\pi} \) are continuous functions.
- **Evaluate Signs**:
At \(](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F7d01a9fa-2d22-41b6-ab89-d6b153d8821e%2F7ef7380a-9436-444c-8a82-61a58f6d13a9%2Fbf0jozf_processed.png&w=3840&q=75)
Transcribed Image Text:---
**Mathematics Problem Solving**
**Problem: Root of the Cosine Function**
**Task**:
Show that there is a root of \( \cos(x) = \frac{x}{\pi} \) in the interval \( \left(0, \frac{\pi}{2}\right) \).
**Instructions**:
Do NOT find the root. Explain all of your steps and reasoning, and name any theorems used.
---
**Solution Guide**:
To show that there is a root of \( \cos(x) = \frac{x}{\pi} \) in the interval \( \left(0, \frac{\pi}{2}\right) \), we can use the **Intermediate Value Theorem** (IVT).
**Step-by-Step Reasoning**:
1. **Define the Function**:
Let \( f(x) = \cos(x) - \frac{x}{\pi} \).
2. **Analyze the Endpoints of the Interval**:
- At \( x = 0 \):
\[ f(0) = \cos(0) - \frac{0}{\pi} = 1 - 0 = 1. \]
- At \( x = \frac{\pi}{2} \):
\[ f\left(\frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2}\right) - \frac{\frac{\pi}{2}}{\pi} = 0 - \frac{1}{2} = -\frac{1}{2}. \]
3. **Apply the Intermediate Value Theorem (IVT)**:
- **IVT Statement**:
If \( f \) is continuous on the interval \([a, b]\) and \( f(a) \) and \( f(b) \) have opposite signs, then there exists at least one \( c \) in the interval \((a, b)\) such that \( f(c) = 0 \).
- **Check Continuity**:
The function \( f(x) = \cos(x) - \frac{x}{\pi} \) is continuous on \( \left[0, \frac{\pi}{2}\right] \) because both \( \cos(x) \) and \( \frac{x}{\pi} \) are continuous functions.
- **Evaluate Signs**:
At \(
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning