(1) Let x be the age in years of a licensed automobile driver. Let y be the percentage of all fatal accidents (for a given age) due to speeding. For example, the first data pair indicates that 33% of all fatal accidents of 17-year-olds are due to speeding. x 17 27 37 47 57 67 77 y 33 28 22 12 10 7 5 Complete parts (a) through (e), given  Σx = 329, Σy = 117, Σx2 = 18,263, Σy2 = 2675, Σxy = 4119, and r ≈ −0.972.   (a) Draw a scatter diagram displaying the data.  Flash Player version 10 or higher is required for this question. You can get Flash Player free from Adobe's website.   (b) Verify the given sums Σx, Σy, Σx2, Σy2, Σxy and the value of the sample correlation coefficient r. (Round your value for r to three decimal places.) Σx =   Σy =   Σx2 =   Σy2 =   Σxy =   r =     (c) Find x, and y. Then find the equation of the least-squares line  = a + bx. (Round your answers for x and y to two decimal places. Round your answers for a and b to three decimal places.) x =  y =    =  +  x   (d) Graph the least-squares line. Be sure to plot the point (x, y) as a point on the line.           (e) Find the value of the coefficient of determination r2. What percentage of the variation in y can be explained by the corresponding variation in x and the least-squares line? What percentage is unexplained? (Round your answer for r2 to three decimal places. Round your answers for the percentages to one decimal place.) r2 =   explained      % unexplained      %   (f) Predict the percentage of all fatal accidents due to speeding for 35-year-olds. (Round your answer to two decimal places.) %   (2) Let x be the age of a licensed driver in years. Let y be the percentage of all fatal accidents (for a given age) due to failure to yield the right of way. For example, the first data pair states that 5% of all fatal accidents of 37-year-olds are due to failure to yield the right of way. x 37 47 57 67 77 87 y 5 8 10 15 27 44 Complete parts (a) through (e), given Σx = 372, Σy = 109, Σx2 = 24814, Σy2 = 3079, Σxy = 8043, and r ≈ 0.927. (a) Draw a scatter diagram displaying the data.  Flash Player version 10 or higher is required for this question. You can get Flash Player free from Adobe's website.   (b) Verify the given sums Σx, Σy, Σx2, Σy2, Σxy, and the value of the sample correlation coefficient r. (Round your value for r to three decimal places.) Σx =   Σy =   Σx2 =   Σy2 =   Σxy =   r =   (c) Find x, and y. Then find the equation of the least-squares line  = a + bx. (Round your answers for x and y to two decimal places. Round your answers for a and b to three decimal places.) x =  y =    =  +  x (d) Graph the least-squares line. Be sure to plot the point (x, y) as a point on the line.         (e) Find the value of the coefficient of determination r2. What percentage of the variation in y can be explained by the corresponding variation in x and the least-squares line? What percentage is unexplained? (Round your answer for r2 to three decimal places. Round your answers for the percentages to one decimal place.) r2 =   explained      % unexplained      % (f) Predict the percentage of all fatal accidents due to failing to yield the right of way for 75-year-olds. (Round your answer to two decimal places.)   (3) Let x be per capita income in thousands of dollars. Let y be the number of medical doctors per 10,000 residents. Six small cities in Oregon gave the following information about x and y. x 8.2 9.2 10.2 8.0 8.3 8.7 y 9.9 18.2 21.0 10.2 11.4 13.1 Complete parts (a) through (e), given Σx = 52.6, Σy = 83.8, Σx2 = 464.5, Σy2 = 1275.86, Σxy = 753.01, and r ≈ 0.974. (a) Draw a scatter diagram displaying the data.  Flash Player version 10 or higher is required for this question. You can get Flash Player free from Adobe's website.   (b) Verify the given sums Σx, Σy, Σx2, Σy2, Σxy, and the value of the sample correlation coefficient r. (Round your value for r to three decimal places.) Σx =   Σy =   Σx2 =   Σy2 =   Σxy =   r =     (c) Find x, and y. Then find the equation of the least-squares line  = a + bx. (Round your answers for x and y to two decimal places. Round your answers for a and b to three decimal places.) x =  y =    =  +  x     (d) Graph the least-squares line. Be sure to plot the point (x, y) as a point on the line.             (e) Find the value of the coefficient of determination r2. What percentage of the variation in y can be explained by the corresponding variation in x and the least-squares line? What percentage is unexplained? (Round your answer for r2 to three decimal places. Round your answers for the percentages to one decimal place.) r2 =   explained      % unexplained      %     (f) Suppose a small city in Oregon has a per capita income of 9.3 thousand dollars. What is the predicted number of M.D.s per 10,000 residents? (Round your answer to two decimal places.) M.D.s per 10,000 residents

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Question

(1) Let x be the age in years of a licensed automobile driver. Let y be the percentage of all fatal accidents (for a given age) due to speeding. For example, the first data pair indicates that 33% of all fatal accidents of 17-year-olds are due to speeding.

x 17 27 37 47 57 67 77
y 33 28 22 12 10 7 5

Complete parts (a) through (e), given 

Σx = 329, Σy = 117, Σx2 = 18,263, Σy2 = 2675, Σxy = 4119, and r ≈ −0.972.

 

(a) Draw a scatter diagram displaying the data.

 
Flash Player version 10 or higher is required for this question. 
You can get Flash Player free from Adobe's website.

 

(b) Verify the given sums Σx, Σy, Σx2, Σy2, Σxy and the value of the sample correlation coefficient r. (Round your value for r to three decimal places.)
Σx =  
Σy =  
Σx2 =  
Σy2 =  
Σxy =  
r =  
 
(c) Find x, and y. Then find the equation of the least-squares line  = a + bx. (Round your answers for x and y to two decimal places. Round your answers for a and b to three decimal places.)
x
y
  +  x
 
(d) Graph the least-squares line. Be sure to plot the point (x, y) as a point on the line.
   
   
 
(e) Find the value of the coefficient of determination r2. What percentage of the variation in y can be explained by the corresponding variation in x and the least-squares line? What percentage is unexplained? (Round your answer for r2 to three decimal places. Round your answers for the percentages to one decimal place.)
r2 =  
explained      %
unexplained      %
 
(f) Predict the percentage of all fatal accidents due to speeding for 35-year-olds. (Round your answer to two decimal places.)
 %
 
(2) Let x be the age of a licensed driver in years. Let y be the percentage of all fatal accidents (for a given age) due to failure to yield the right of way. For example, the first data pair states that 5% of all fatal accidents of 37-year-olds are due to failure to yield the right of way.
x 37 47 57 67 77 87
y 5 8 10 15 27 44
Complete parts (a) through (e), given Σx = 372, Σy = 109, Σx2 = 24814, Σy2 = 3079, Σxy = 8043, and r ≈ 0.927.
(a) Draw a scatter diagram displaying the data.

 
Flash Player version 10 or higher is required for this question. 
You can get Flash Player free from Adobe's website.

 

(b) Verify the given sums Σx, Σy, Σx2, Σy2, Σxy, and the value of the sample correlation coefficient r. (Round your value for r to three decimal places.)
Σx =  
Σy =  
Σx2 =  
Σy2 =  
Σxy =  
r =  

(c) Find x, and y. Then find the equation of the least-squares line  = a + bx. (Round your answers for x and y to two decimal places. Round your answers for a and b to three decimal places.)
x
y
  +  x

(d) Graph the least-squares line. Be sure to plot the point (x, y) as a point on the line.
   
   

(e) Find the value of the coefficient of determination r2. What percentage of the variation in y can be explained by the corresponding variation in x and the least-squares line? What percentage is unexplained? (Round your answer for r2 to three decimal places. Round your answers for the percentages to one decimal place.)
r2 =  
explained      %
unexplained      %

(f) Predict the percentage of all fatal accidents due to failing to yield the right of way for 75-year-olds. (Round your answer to two decimal places.)
 
(3) Let x be per capita income in thousands of dollars. Let y be the number of medical doctors per 10,000 residents. Six small cities in Oregon gave the following information about x and y.
x 8.2 9.2 10.2 8.0 8.3 8.7
y 9.9 18.2 21.0 10.2 11.4 13.1
Complete parts (a) through (e), given Σx = 52.6, Σy = 83.8, Σx2 = 464.5, Σy2 = 1275.86, Σxy = 753.01, and r ≈ 0.974.
(a) Draw a scatter diagram displaying the data.

 
Flash Player version 10 or higher is required for this question. 
You can get Flash Player free from Adobe's website.

 

(b) Verify the given sums Σx, Σy, Σx2, Σy2, Σxy, and the value of the sample correlation coefficient r. (Round your value for r to three decimal places.)
Σx =  
Σy =  
Σx2 =  
Σy2 =  
Σxy =  
r =  
 
(c) Find x, and y. Then find the equation of the least-squares line  = a + bx. (Round your answers for x and y to two decimal places. Round your answers for a and b to three decimal places.)
x
y
  +  x
 
 
(d) Graph the least-squares line. Be sure to plot the point (x, y) as a point on the line.
   
   
 
 
(e) Find the value of the coefficient of determination r2. What percentage of the variation in y can be explained by the corresponding variation in x and the least-squares line? What percentage is unexplained? (Round your answer for r2 to three decimal places. Round your answers for the percentages to one decimal place.)
r2 =  
explained      %
unexplained      %
 
 
(f) Suppose a small city in Oregon has a per capita income of 9.3 thousand dollars. What is the predicted number of M.D.s per 10,000 residents? (Round your answer to two decimal places.)
 M.D.s per 10,000 residents
 
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Correlation, Regression, and Association
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman