(1) If AB= 0, then A=0 or B=0. (2) If A² = I, then A = I or A = -1. (3) AB = BA

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
True false 1 to 5
(1) If AB O, then A= O or B=0.
(2) If A² I, then A = I or A=-I.
(3) AB=BA
(4) If AB
(5) A(BC) = (AB)C
(6) (AB)' = B' A'
AC, then B = C.
(7) A+ A' is symmetric.
(8) A-A' is skew-symmetric.
(9) If A and B are symmetric, then so is AB.
(10) If A = (a)nxn is skew-symmetric, then a=0 for all 1 ≤ i ≤n.
(11) tr(A + B)= tr(A) + tr(B)
(12) tr(aA) = a"tr(A), where a € R and A has size n x n.
(13) tr(AB) = tr(A)tr(B)
(14) tr(AB) = tr(BA)
(15) tr(AA) = (tr(A))2
(16) There exist square matrices A and B such that AB-BA=I.
Transcribed Image Text:(1) If AB O, then A= O or B=0. (2) If A² I, then A = I or A=-I. (3) AB=BA (4) If AB (5) A(BC) = (AB)C (6) (AB)' = B' A' AC, then B = C. (7) A+ A' is symmetric. (8) A-A' is skew-symmetric. (9) If A and B are symmetric, then so is AB. (10) If A = (a)nxn is skew-symmetric, then a=0 for all 1 ≤ i ≤n. (11) tr(A + B)= tr(A) + tr(B) (12) tr(aA) = a"tr(A), where a € R and A has size n x n. (13) tr(AB) = tr(A)tr(B) (14) tr(AB) = tr(BA) (15) tr(AA) = (tr(A))2 (16) There exist square matrices A and B such that AB-BA=I.
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,