1 gRU (7) = E (x – 10)" n²1766" n=1 a) Find the interval of convergence for the Rutgers function. b) Find the interval of convergence for the 1st derivative of the Rutgers function c) Write down dr5. (10)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

The “Rutgers” function (the best function!) has Taylor series about the point a = 10

 

1
fRU (x) = L n²1766"
(x – 10)"
n=1
(a) Find the interval of convergence for the Rutgers function.
(b) Find the interval of convergence for the 1st derivative of the Rutgers function.
(c) Write down
dx5
fR (10)
Transcribed Image Text:1 fRU (x) = L n²1766" (x – 10)" n=1 (a) Find the interval of convergence for the Rutgers function. (b) Find the interval of convergence for the 1st derivative of the Rutgers function. (c) Write down dx5 fR (10)
Expert Solution
Step 1

Consider the Rutgers functionfRUx=n=11n21766nx-10nTo find:aFind the interval of convergence for the Rutgers function.bFind the interval of convergence for the1st derivative of theRutgers function.cWrite down d5dx5fRU10

Step 2

aConsider the Rutgers functionfRUx=n=11n21766nx-10nThere we are able to show that there is a number Rso the power series converges for x-a<R anddiverges for x-a>R.Let an=1n21766nx-10nBy ratio test:L=limnan+1an=limn1n+121766n+1x-10n+11n21766nx-10n=limnn2x-101766n+12=x-101766The ratio test tells that if L<1,then series will be convergent.Now,x-101766<1-1<x-101766<1-1756<x<1776

Step 3

Now check at the end points.At x=1776, thenfRU1776=n=11n21766n1776-10n=n=11n21766n1766n=n=11n2By p-test,the series n=11n2 is convergent.At x=-1756,thenfRU1776=n=11n21766n-1756-10n=n=1-1nn2By Alternate series test,the series n=1-1nn2 is convergent.Hence,the series n=11n21766nx-10n is convergent in theinterval -1756,1776.

steps

Step by step

Solved in 6 steps

Blurred answer
Knowledge Booster
Power Series
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,