(1) Find the limit. Say why LH rule (l'Hospital's rule) applies to this case and then use that sin x - x rule to find the limit lim x-0 (e²x) - 1

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

do no.1 pls and show full work.

### Calculus Practice Problems

#### Problem Set:

1. **Find the limit.** Say why L'Hospital's rule (L'Hospital's rule) applies to this case and then use that rule to find the limit.
   \[
   \lim_{x \to 0} \frac{\sin x - x}{(e^{2x}) - 1}
   \]

2. **Calculate the limit.**
   \[
   \lim_{x \to \infty} \frac{\ln x}{\sqrt{x}}
   \]

3. **Find the intervals on which function \( f \) is concaving up or concaving down and find the inflection point(s).**
   \[
   f(x) = x^3 - 3x^2 - 9x + 4
   \]

4. **Find the critical numbers of the function.**
   \[
   f(x) = \frac{x^2 + 2}{2x - 1}
   \]

5. **Sketch the function. (Must show the details)** 
   \[
   f(x) =
   \begin{cases} 
   x^2 & \text{when } -1 \leq x \leq 0 \\
   2 - 2x & \text{when } 0 < x \leq 1 
   \end{cases}
   \]

6. **If \( f(x) = \frac{x^2}{x+1} + \cos x \), find \( f'(1) \).**

7. **Find the equation of the tangent line at \( (\pi, 0) \).** For \( y = \sin (\sin x) \)

8. **Implicit Differentiation problem.** If \( y \cos(x) + x = 5 \), find \( y'' \) where \( x = 0 \). 
   (MUST use implicit differentiation approach for credit)

9. **Suppose \( 4x^2 + y^2 = 25 \)**:
   1. If \( \frac{dy}{dt} = \frac{1}{3} \), find \( \frac{dx}{dt} \) when \( x = 2 \).   
      **Note:** \( x \) and \( y \) are length in meters.
   2. If \(
Transcribed Image Text:### Calculus Practice Problems #### Problem Set: 1. **Find the limit.** Say why L'Hospital's rule (L'Hospital's rule) applies to this case and then use that rule to find the limit. \[ \lim_{x \to 0} \frac{\sin x - x}{(e^{2x}) - 1} \] 2. **Calculate the limit.** \[ \lim_{x \to \infty} \frac{\ln x}{\sqrt{x}} \] 3. **Find the intervals on which function \( f \) is concaving up or concaving down and find the inflection point(s).** \[ f(x) = x^3 - 3x^2 - 9x + 4 \] 4. **Find the critical numbers of the function.** \[ f(x) = \frac{x^2 + 2}{2x - 1} \] 5. **Sketch the function. (Must show the details)** \[ f(x) = \begin{cases} x^2 & \text{when } -1 \leq x \leq 0 \\ 2 - 2x & \text{when } 0 < x \leq 1 \end{cases} \] 6. **If \( f(x) = \frac{x^2}{x+1} + \cos x \), find \( f'(1) \).** 7. **Find the equation of the tangent line at \( (\pi, 0) \).** For \( y = \sin (\sin x) \) 8. **Implicit Differentiation problem.** If \( y \cos(x) + x = 5 \), find \( y'' \) where \( x = 0 \). (MUST use implicit differentiation approach for credit) 9. **Suppose \( 4x^2 + y^2 = 25 \)**: 1. If \( \frac{dy}{dt} = \frac{1}{3} \), find \( \frac{dx}{dt} \) when \( x = 2 \). **Note:** \( x \) and \( y \) are length in meters. 2. If \(
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning