1 4. Let f(2)= 2(2-3)² annular region 1 <=-1|< 2 Compute the Laurent series expansion of f(2) about zo = 1 valid on the Find a suitable region in which is analytic. n=1 (2z - 1)" n

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
1
4. Let f(2)=
z(z-3)²*
annular region 1</z-1|< 2
Compute the Laurent series expansion of f(z) about zo = 1 valid on the
Find a suitable region in which
is analytic.
(2z - 1)"
Σ(2-1)
n
n=1
Transcribed Image Text:1 4. Let f(2)= z(z-3)²* annular region 1</z-1|< 2 Compute the Laurent series expansion of f(z) about zo = 1 valid on the Find a suitable region in which is analytic. (2z - 1)" Σ(2-1) n n=1
Expert Solution
Step 1: "Introduction to the solution"

4) The  given function  is  f left parenthesis z right parenthesis equals fraction numerator 1 over denominator z left parenthesis z minus 3 right parenthesis squared end fraction comma space space 1 less than vertical line z minus 1 vertical line less than 2

    We  have to find the Laurent series expansion of f left parenthesis z right parenthesis spaceabout z subscript 0 equals 1 valid  on the annulur region 1 less than vertical line z minus 1 vertical line less than 2.

    Observe that f left parenthesis z right parenthesis equals 1 third fraction numerator open square brackets z minus left parenthesis z minus 3 right parenthesis close square brackets over denominator z open parentheses z minus 3 close parentheses squared end fraction equals 1 third space open square brackets 1 over left parenthesis z minus 3 right parenthesis squared minus fraction numerator 1 over denominator z open parentheses z minus 3 close parentheses end fraction close square brackets

                               equals 1 third space open square brackets 1 over open parentheses z minus 3 close parentheses squared minus 1 third open curly brackets fraction numerator 1 over denominator left parenthesis z minus 3 right parenthesis end fraction minus 1 over z close curly brackets close square brackets
equals 1 third.1 over open parentheses z minus 3 close parentheses squared minus 1 over 9. fraction numerator 1 over denominator left parenthesis z minus 3 right parenthesis end fraction minus 1 over 9.1 over z
equals 1 third. fraction numerator 1 over denominator 4 space open parentheses 1 minus fraction numerator left parenthesis z minus 1 right parenthesis over denominator 2 end fraction close parentheses squared space end fraction minus 1 over 9. fraction numerator 1 over denominator left parenthesis negative 2 right parenthesis end fraction. fraction numerator 1 over denominator open parentheses 1 minus fraction numerator left parenthesis z minus 1 right parenthesis over denominator 2 end fraction close parentheses end fraction minus fraction numerator 1 over denominator 1 plus left parenthesis z minus 1 right parenthesis end fraction
equals 1 over 12 open parentheses 1 minus fraction numerator left parenthesis z minus 1 right parenthesis over denominator 2 end fraction close parentheses to the power of negative 2 end exponent plus 1 over 18 space open parentheses 1 minus fraction numerator left parenthesis z minus 1 right parenthesis over denominator 2 end fraction close parentheses to the power of negative 1 end exponent minus open parentheses 1 plus left parenthesis z minus 1 right parenthesis close parentheses to the power of negative 1 end exponent........... left parenthesis 1 right parenthesis

steps

Step by step

Solved in 3 steps with 21 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,