1 ¹ {3² (35-9))}₁ by using a) Find L-1 i) the property of Laplace transform. ii) the convolution theorem.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Hi please help me solve this! calculus questions. Also, i've provide the appendix for sample equations to refer!

Function
a (constant)
f
t"
sin at
cos at
sinh at
cosh at
eat f(t)
f(t-a)u(t-a)
t" f(t)
f(n) (t)
f(u) du
f(u)g(t-u) du
Trigonometric Identities:
APPENDIX
TABLE OF LAPLACE TRANSFORMS
Laplace Transforms
a
S
1
s-a
n!
50+1
a
s² + a²
S
+ a
2
a
s²-a²
S
2
s² - a²
2
F(s-a)
e-as F(s)
(-1)"F(")(s)
s"F(s)-sn-1f(0)-sn-2f (¹) (0) --
F(s)
S
F(s) G(s)
2sinAcosB = sin (A + B) + sin (A - B)
2cosAcosB = cos (A - B) + cos (A + B)
2sinAsinB = cos (A-B)- cos (A + B)
-f(n-1) (0)
sin 2A = 2 sin A cos A
cos 2A = cos²A - sin³A = 2 cos²A-1 = 1-2 sin²A
sin (A + B) = sin A cos B ± cos A sin B
sin A sin B
cos (A + B) = cos A cos B
cosh?A – sinh?A = 1
sinh (A + B) = sinh A cosh B + cosh A sinh B
cosh (A + B) = cosh A cosh B+ sinh A sinh B
Transcribed Image Text:Function a (constant) f t" sin at cos at sinh at cosh at eat f(t) f(t-a)u(t-a) t" f(t) f(n) (t) f(u) du f(u)g(t-u) du Trigonometric Identities: APPENDIX TABLE OF LAPLACE TRANSFORMS Laplace Transforms a S 1 s-a n! 50+1 a s² + a² S + a 2 a s²-a² S 2 s² - a² 2 F(s-a) e-as F(s) (-1)"F(")(s) s"F(s)-sn-1f(0)-sn-2f (¹) (0) -- F(s) S F(s) G(s) 2sinAcosB = sin (A + B) + sin (A - B) 2cosAcosB = cos (A - B) + cos (A + B) 2sinAsinB = cos (A-B)- cos (A + B) -f(n-1) (0) sin 2A = 2 sin A cos A cos 2A = cos²A - sin³A = 2 cos²A-1 = 1-2 sin²A sin (A + B) = sin A cos B ± cos A sin B sin A sin B cos (A + B) = cos A cos B cosh?A – sinh?A = 1 sinh (A + B) = sinh A cosh B + cosh A sinh B cosh (A + B) = cosh A cosh B+ sinh A sinh B
1
{5² (33-9)}t by using
a) Find £-¹ {
-1
i) the property of Laplace transform.
ii) the convolution theorem.
Transcribed Image Text:1 {5² (33-9)}t by using a) Find £-¹ { -1 i) the property of Laplace transform. ii) the convolution theorem.
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,