1 -1 4 x is: -2 10. A fundamental set of solutions of x' = 3 -3 3 -1 () (a) x1 = et 1 X2 = e-2t 1 (b) x1 = e' 1 X2 = e-2t 1 -2t , X3 = te- 1. (c) x1 = e , X2 = e-2t 1 , X3 = e-2t 1 + te-2t 1 (:) (d) x1 = et , X2 = e-2t X3 = e-2t + te-2t (e) None of the above.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem Statement:**

10. A fundamental set of solutions of the differential equation \( \mathbf{x}' = \begin{pmatrix} -2 & 1 & -1 \\ 3 & -3 & 4 \\ 3 & -1 & 2 \end{pmatrix} \mathbf{x} \) is:

**Options:**

(a) \( \mathbf{x}_1 = e^t \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{-2t} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \)

(b) \( \mathbf{x}_1 = e^t \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{-2t} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{x}_3 = te^{-2t} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \)

(c) \( \mathbf{x}_1 = e^t \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{-2t} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{x}_3 = e^{-2t} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} + te^{-2t} \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} \)

(d) \( \mathbf{x}_1 = e^t \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{-2t} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{x}_3 = e^{-2t} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} + te^{-2t} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \)

(e) None of the above.
Transcribed Image Text:**Problem Statement:** 10. A fundamental set of solutions of the differential equation \( \mathbf{x}' = \begin{pmatrix} -2 & 1 & -1 \\ 3 & -3 & 4 \\ 3 & -1 & 2 \end{pmatrix} \mathbf{x} \) is: **Options:** (a) \( \mathbf{x}_1 = e^t \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{-2t} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \) (b) \( \mathbf{x}_1 = e^t \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{-2t} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{x}_3 = te^{-2t} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \) (c) \( \mathbf{x}_1 = e^t \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{-2t} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{x}_3 = e^{-2t} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} + te^{-2t} \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} \) (d) \( \mathbf{x}_1 = e^t \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{-2t} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{x}_3 = e^{-2t} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} + te^{-2t} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \) (e) None of the above.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,