1 -1 4 x is: -2 10. A fundamental set of solutions of x' = 3 -3 3 -1 () (a) x1 = et 1 X2 = e-2t 1 (b) x1 = e' 1 X2 = e-2t 1 -2t , X3 = te- 1. (c) x1 = e , X2 = e-2t 1 , X3 = e-2t 1 + te-2t 1 (:) (d) x1 = et , X2 = e-2t X3 = e-2t + te-2t (e) None of the above.
1 -1 4 x is: -2 10. A fundamental set of solutions of x' = 3 -3 3 -1 () (a) x1 = et 1 X2 = e-2t 1 (b) x1 = e' 1 X2 = e-2t 1 -2t , X3 = te- 1. (c) x1 = e , X2 = e-2t 1 , X3 = e-2t 1 + te-2t 1 (:) (d) x1 = et , X2 = e-2t X3 = e-2t + te-2t (e) None of the above.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question

Transcribed Image Text:**Problem Statement:**
10. A fundamental set of solutions of the differential equation \( \mathbf{x}' = \begin{pmatrix} -2 & 1 & -1 \\ 3 & -3 & 4 \\ 3 & -1 & 2 \end{pmatrix} \mathbf{x} \) is:
**Options:**
(a) \( \mathbf{x}_1 = e^t \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{-2t} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \)
(b) \( \mathbf{x}_1 = e^t \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{-2t} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{x}_3 = te^{-2t} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \)
(c) \( \mathbf{x}_1 = e^t \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{-2t} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{x}_3 = e^{-2t} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} + te^{-2t} \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} \)
(d) \( \mathbf{x}_1 = e^t \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = e^{-2t} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{x}_3 = e^{-2t} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} + te^{-2t} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \)
(e) None of the above.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

