0.1 lb. re to view page 1 of the standard normal distribution table. re to view page 2 of the standard normal distribution table. expected value and standard deviation of the sample mean X is ug =D n integer or a decimal. Do not round.) n be expected that sample means fall between 176.2 lb and 179.7 lb, to the nearest integer.)

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question
.00
.01
.02
.03 .04 .05 .06
.07
.08
.09
0.0003
0,0004
0.0003
0,0004
0.0003
0.0004
0.0003
.00
.01
.02
.03
.04
.05
.06
.07
.08
.09
0.0003
0.0005
0.0003
0,0005
0.0003
0.0004
-3.4
0.0003
0.0003
0.0002 -3.4
-3.3
0.0005
0,0004
0.0004
0.0003 -3.3
0.5120
0.5517
0.5910
0.6293 0.6331
0.0
0.5080
0.5239
0.5279
0,5160
0.5557
0.5199
0.5319
0,5714
0.5359
0.5753
0.6141
0.5000
0.5040
0.0
0.0005 -3.2
0.0007 -3.1
0.0010 -3.0
-3.2
0.0007
0.0007
0.0006
0.0006
0.0006
0.0006
0.0006
0.0005
0.0005
0.1
0.5398
0.5438
0,5478
0,5596
0.5636
0.5675
0.1
0.2
0.0009
0.0012
0.0009
0.0008
-3.1
-3.0
0.5793
0.6179
0.6554
0.5832
0.6217
0.6591
0.0010
0.0009
0.0008
0.0008
0.0008
0.0007
0.2
0.6026
0.6406
0.6772
0.5871
0.5948
0.5987
0.6064
0.6103
0.0013
0.0013
0.0013
0.0012
0.0011
0.0011
0.0011
0.0010
0.6368
0,6736
0.6736
0.3
0.6255
0.6443
0.6480
0.6517
0.3
0.4
0.6628
0.6664
0.6700
0.6808
0.6844
0.6879
0.4
-2.9
-2.8
0.0018
0.0024
0.0017
0.0023
0,0015
0.0021
0.0014
0.0020
0.0019
0.0018
0.0016
0.0016
0.0015
0.0014
-2.9
0.0025
0.0023
0.0022
0.0019 -2.8
0.6915
0.6950
0.7257
0.7291
0.7580 0.7611
0.6985
0.7019
0.7357
0.7054
0.7389 0.7422
0.7704
0.7123
0.7454
0.0026
0.0021
0.5
0.7088
0.7157
0.7190
0.7224
0.5
-2.7
0.0035
0.0034
0.0033
0.0032
0.0031
0.0030
0.0029 0.0028
0.0027
0.0026 -2.7
0.6
0.7324
0.7486
0.7794
0.7517
0.7549
0.6
-2.6
-2.5
0.0045
0.0060
0.0044
0.0059
0.0041
0.0055
0,0040
0.0054
0.0047
0.0043
0.0039
0.0038
0.0037
0.0036 -2.6
0.0048 -2.5
0.7
0.7642
0.7673
0.7734
0.7764
0.7823
0.7852
0.7
0.0062
0.0057
0.0051
0.0049
0.7939
0.8212
0.7967
0.8238
0.8078
0.8340
0.0052
0.7995
0.8264
0.8051
0.8315
0.8106
0.8365
0.8133
0.8389
0.8
0.7881
0,8159
0.7910
0.8186
0.8023
0.8
0.9
0.8289
0.9
0.0078
0.0102
0.0075
0.0099
0.0129
0.0066
0.0087
0.0082
0.0069
0.0091
0.0119
0,0068
-2.4
-2.3
0.0080
0.0073 0.0071
0.0064 -2.4
0.0104
0.0136
0.0096
0.0125
0.0094
0.0122
0.0089
0.0116
0.8461
0.8686
0.0084 -2.3
0.8485
0.8708
0.8907
0.8508
0.8729
0.8925
0.9099
0.9251
0.8531
0.8749
0.8944
0.0107
1.0
0.8413
0.8438
0.8554
0.8577
0.8790
0.8980
0.8599
0.8621
1.0
-2.2
0.0139
0.0132
0.0113
0.0110 -2.2
1.1
0,8643
0.8665
0.8770
0.8810
0.8830
1.1
1.2
0.0143 -2.1
-2.0
-2.1
0.0179
0.0174
0,0170
0.0170
0.0166
0.0162
0.0158
0.0154
0.0150
0.0192
0.0146
1.2
0.8849
0,8869
0.8888
0.8962
0.9131
0.8997
0.9015
0.9066
0.9222
-2.0
0.0228
0.0222
0.0217
0.0212
0.0207
0.0202
0.0197
0.0188
0.0183
1.3
0.9032
0.9049
0.9082
0.9115
0.9147
0.9162
0.9177
1.3
0.9192
0.9207
0.9236
0.9265
0.9279
0.9292
0.9306
0.0281
0.0351
0.0436
1.4
0.9319
1.4
-1.9
-1.8
0.0287
0.0274
0.0268
0.0336
0.0262
0.0329
0.0256
0.0322
0.0250
0.0314
0.0244
0.0239
0.0233 -1.9
0.0294 -1.8
0.0359
0.0344
0.0427
0.0301
0.0375
0.0307
1.5
0.9332
0.9345
0,9357
0,9370
0.9382
0.9394
0.9406
0.9418
0.9429
0.9441
1.5
-1.7
-1.6
0.0446
0.0418
0.0409
0.0401
0.0392
0.0384
0.0367 -1.7
1.6
0,9452
0,9463
0.9474
0.9484
0.9495
0.9505
0.9515
0.9525 0.9535
0.9545
1.6
0.0548
0.0668
0.0537
0.0655
0.0505
0,0618
0.0526
0.0516
0.0495
0.0485
0.0455 -1.6
0.0475
0.0582
0.0465
1.7
0.9554
0.9564
0.9649
0.9719
0.9573
0.9582
0.9664
0.9732
0.9591
0.9599
0.9608
0.9616
0.9625
0.9633
1.7
0.0643
0,0630
0,0606
0.9641
0.9713
0,9671
0.9738
-1.5
0.0594
0.0571
0.0559 -1.5
1.8
0.9656
0.9678
0.9686
0.9693
0.9699
0.9706
1.8
1.9
0.9726
0.9744
0.9750
0.9756
0.9761
0.9767
1.9
0.0764
0.0918
0.1093
-1.4
0.0808
0.0793
0.0778
0.0749
0.0735
0.0721
0.0708
0.0694
0.0681
-1.4
0.0823 -1.3
0.0968
0.1151
0.0951
0.1131
0.0934
0.1112
0.0901
0.1075
0.0885
0.0869
0.1056 0.1038
0.0853
0.1020
0.0838
0.1003
-1.3
2.0 0,9772
0,9778
0,9783
0.9788
0,9793
0,9798
0,9803
0,9808
0,9812
0,9817
2.0
-1.2
0.0985 -1.2
2.1
0,9821
0,9826
0,9830
0,9834
0,9838
0,9842
0,9846
0.9850
0.9854
0.9857
2.1
Transcribed Image Text:.00 .01 .02 .03 .04 .05 .06 .07 .08 .09 0.0003 0,0004 0.0003 0,0004 0.0003 0.0004 0.0003 .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 0.0003 0.0005 0.0003 0,0005 0.0003 0.0004 -3.4 0.0003 0.0003 0.0002 -3.4 -3.3 0.0005 0,0004 0.0004 0.0003 -3.3 0.5120 0.5517 0.5910 0.6293 0.6331 0.0 0.5080 0.5239 0.5279 0,5160 0.5557 0.5199 0.5319 0,5714 0.5359 0.5753 0.6141 0.5000 0.5040 0.0 0.0005 -3.2 0.0007 -3.1 0.0010 -3.0 -3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.1 0.5398 0.5438 0,5478 0,5596 0.5636 0.5675 0.1 0.2 0.0009 0.0012 0.0009 0.0008 -3.1 -3.0 0.5793 0.6179 0.6554 0.5832 0.6217 0.6591 0.0010 0.0009 0.0008 0.0008 0.0008 0.0007 0.2 0.6026 0.6406 0.6772 0.5871 0.5948 0.5987 0.6064 0.6103 0.0013 0.0013 0.0013 0.0012 0.0011 0.0011 0.0011 0.0010 0.6368 0,6736 0.6736 0.3 0.6255 0.6443 0.6480 0.6517 0.3 0.4 0.6628 0.6664 0.6700 0.6808 0.6844 0.6879 0.4 -2.9 -2.8 0.0018 0.0024 0.0017 0.0023 0,0015 0.0021 0.0014 0.0020 0.0019 0.0018 0.0016 0.0016 0.0015 0.0014 -2.9 0.0025 0.0023 0.0022 0.0019 -2.8 0.6915 0.6950 0.7257 0.7291 0.7580 0.7611 0.6985 0.7019 0.7357 0.7054 0.7389 0.7422 0.7704 0.7123 0.7454 0.0026 0.0021 0.5 0.7088 0.7157 0.7190 0.7224 0.5 -2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 -2.7 0.6 0.7324 0.7486 0.7794 0.7517 0.7549 0.6 -2.6 -2.5 0.0045 0.0060 0.0044 0.0059 0.0041 0.0055 0,0040 0.0054 0.0047 0.0043 0.0039 0.0038 0.0037 0.0036 -2.6 0.0048 -2.5 0.7 0.7642 0.7673 0.7734 0.7764 0.7823 0.7852 0.7 0.0062 0.0057 0.0051 0.0049 0.7939 0.8212 0.7967 0.8238 0.8078 0.8340 0.0052 0.7995 0.8264 0.8051 0.8315 0.8106 0.8365 0.8133 0.8389 0.8 0.7881 0,8159 0.7910 0.8186 0.8023 0.8 0.9 0.8289 0.9 0.0078 0.0102 0.0075 0.0099 0.0129 0.0066 0.0087 0.0082 0.0069 0.0091 0.0119 0,0068 -2.4 -2.3 0.0080 0.0073 0.0071 0.0064 -2.4 0.0104 0.0136 0.0096 0.0125 0.0094 0.0122 0.0089 0.0116 0.8461 0.8686 0.0084 -2.3 0.8485 0.8708 0.8907 0.8508 0.8729 0.8925 0.9099 0.9251 0.8531 0.8749 0.8944 0.0107 1.0 0.8413 0.8438 0.8554 0.8577 0.8790 0.8980 0.8599 0.8621 1.0 -2.2 0.0139 0.0132 0.0113 0.0110 -2.2 1.1 0,8643 0.8665 0.8770 0.8810 0.8830 1.1 1.2 0.0143 -2.1 -2.0 -2.1 0.0179 0.0174 0,0170 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0192 0.0146 1.2 0.8849 0,8869 0.8888 0.8962 0.9131 0.8997 0.9015 0.9066 0.9222 -2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0188 0.0183 1.3 0.9032 0.9049 0.9082 0.9115 0.9147 0.9162 0.9177 1.3 0.9192 0.9207 0.9236 0.9265 0.9279 0.9292 0.9306 0.0281 0.0351 0.0436 1.4 0.9319 1.4 -1.9 -1.8 0.0287 0.0274 0.0268 0.0336 0.0262 0.0329 0.0256 0.0322 0.0250 0.0314 0.0244 0.0239 0.0233 -1.9 0.0294 -1.8 0.0359 0.0344 0.0427 0.0301 0.0375 0.0307 1.5 0.9332 0.9345 0,9357 0,9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.5 -1.7 -1.6 0.0446 0.0418 0.0409 0.0401 0.0392 0.0384 0.0367 -1.7 1.6 0,9452 0,9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.6 0.0548 0.0668 0.0537 0.0655 0.0505 0,0618 0.0526 0.0516 0.0495 0.0485 0.0455 -1.6 0.0475 0.0582 0.0465 1.7 0.9554 0.9564 0.9649 0.9719 0.9573 0.9582 0.9664 0.9732 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.7 0.0643 0,0630 0,0606 0.9641 0.9713 0,9671 0.9738 -1.5 0.0594 0.0571 0.0559 -1.5 1.8 0.9656 0.9678 0.9686 0.9693 0.9699 0.9706 1.8 1.9 0.9726 0.9744 0.9750 0.9756 0.9761 0.9767 1.9 0.0764 0.0918 0.1093 -1.4 0.0808 0.0793 0.0778 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681 -1.4 0.0823 -1.3 0.0968 0.1151 0.0951 0.1131 0.0934 0.1112 0.0901 0.1075 0.0885 0.0869 0.1056 0.1038 0.0853 0.1020 0.0838 0.1003 -1.3 2.0 0,9772 0,9778 0,9783 0.9788 0,9793 0,9798 0,9803 0,9808 0,9812 0,9817 2.0 -1.2 0.0985 -1.2 2.1 0,9821 0,9826 0,9830 0,9834 0,9838 0,9842 0,9846 0.9850 0.9854 0.9857 2.1
Suppose 400 random samples (each of size 25) are drawn from a population of male adults whose weights are approximately Normally distributed with mean 178.3 lb and standard deviation 7.8 lb. Sample means are recorded to the
nearest 0.1 lb.
Click here to view page 1 of the standard normal distribution table.
Click here to view page 2 of the standard normal distribution table,
(a) The expected value and standard deviation of the sample mean X is µy = and oz = |
, respectively.
(Type an integer or a decimal. Do not round.)
(b) It can be expected that sample means fall between 176.2 lb and 179.7 Ib, both inclusive (2 and s).
(Round to the nearest integer.)
Transcribed Image Text:Suppose 400 random samples (each of size 25) are drawn from a population of male adults whose weights are approximately Normally distributed with mean 178.3 lb and standard deviation 7.8 lb. Sample means are recorded to the nearest 0.1 lb. Click here to view page 1 of the standard normal distribution table. Click here to view page 2 of the standard normal distribution table, (a) The expected value and standard deviation of the sample mean X is µy = and oz = | , respectively. (Type an integer or a decimal. Do not round.) (b) It can be expected that sample means fall between 176.2 lb and 179.7 Ib, both inclusive (2 and s). (Round to the nearest integer.)
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Point Estimation, Limit Theorems, Approximations, and Bounds
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON