{0} (a) Find the transition matrix from B to the standard ordered basis E= Consider the ordered bases B = T= (b) Find the transition matrix from C to B. S = (c) Find the coordinates of u = [B] [u]B = 18 Note: You can earn partial credit on this problem. and C= {}]} {D.Q} in the ordered basis B. for the vector space R².

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Linear Algebra Practice Problem: Bases and Coordinates**

Consider the ordered bases \( B = \left\{ \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 9 \\ 4 \end{bmatrix} \right\} \) and \( C = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\} \) for the vector space \( \mathbb{R}^2 \).

1. **Transition Matrix from \( B \) to the Standard Ordered Basis \( E \)**

   Find the transition matrix from \( B \) to the standard ordered basis \( E = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} \).

   \[
   T = \begin{bmatrix} 
   \boxed{} & \boxed{} \\ 
   \boxed{} & \boxed{} 
   \end{bmatrix}
   \]

2. **Transition Matrix from \( C \) to \( B \)**

   Find the transition matrix from \( C \) to \( B \).

   \[
   S = \begin{bmatrix} 
   \boxed{} & \boxed{} \\ 
   \boxed{} & \boxed{} 
   \end{bmatrix}
   \]

3. **Coordinates of \( \mathbf{u} \) in the Ordered Basis \( B \)**

   Find the coordinates of \( \mathbf{u} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} \) in the ordered basis \( B \).

   \[
   [\mathbf{u}]_B = \begin{bmatrix} 
   \boxed{} \\ 
   \boxed{} 
   \end{bmatrix}
   \]

**Note:** You can earn partial credit on this problem.

---

### Explanation of Diagrams:

This text includes three main parts. Each part requires finding matrices or coordinates based on provided vector bases and the vector space \( \mathbb{R}^2 \).

1. **Transition Matrix Diagram (Part a):**

   The matrix \( T \) is a 2x2
Transcribed Image Text:**Linear Algebra Practice Problem: Bases and Coordinates** Consider the ordered bases \( B = \left\{ \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 9 \\ 4 \end{bmatrix} \right\} \) and \( C = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\} \) for the vector space \( \mathbb{R}^2 \). 1. **Transition Matrix from \( B \) to the Standard Ordered Basis \( E \)** Find the transition matrix from \( B \) to the standard ordered basis \( E = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} \). \[ T = \begin{bmatrix} \boxed{} & \boxed{} \\ \boxed{} & \boxed{} \end{bmatrix} \] 2. **Transition Matrix from \( C \) to \( B \)** Find the transition matrix from \( C \) to \( B \). \[ S = \begin{bmatrix} \boxed{} & \boxed{} \\ \boxed{} & \boxed{} \end{bmatrix} \] 3. **Coordinates of \( \mathbf{u} \) in the Ordered Basis \( B \)** Find the coordinates of \( \mathbf{u} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} \) in the ordered basis \( B \). \[ [\mathbf{u}]_B = \begin{bmatrix} \boxed{} \\ \boxed{} \end{bmatrix} \] **Note:** You can earn partial credit on this problem. --- ### Explanation of Diagrams: This text includes three main parts. Each part requires finding matrices or coordinates based on provided vector bases and the vector space \( \mathbb{R}^2 \). 1. **Transition Matrix Diagram (Part a):** The matrix \( T \) is a 2x2
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,