Excel Project Example
xlsx
keyboard_arrow_up
School
Los Angeles City College *
*We aren’t endorsed by this school
Course
102
Subject
Statistics
Date
Jan 9, 2024
Type
xlsx
Pages
13
Uploaded by GeneralComputer1899
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.95102034
R Square
0.90443969
Adjusted R S
0.84073282
Standard Erro 108192.566
Observations
6
ANOVA
df
SS
MS
F
Significance F
Regression
2 3.3237E+11 1.6618E+11 14.1968941 0.02954039
Residual
3 3.5117E+10 1.1706E+10
Total
5 3.6748E+11
CoefficientsStandard Error
t Stat
P-value
Lower 95%
Upper 95%
Lower 95.0%
Intercept
5656.14957
121167.28
0.0466805 0.96570153 -379952.213 391264.512 -379952.213
Size
382.114033 74.6195634 5.12082911
0.0144153 144.641279 619.586787 144.641279
Bedrooms
-164845.201 50826.8817 -3.24326804 0.04773246 -326599.023 -3091.37901 -326599.023
Upper 95.0%
391264.512
619.586787
-3091.37901
URL
https://www.zillow.com/homedetails/152-Summer-St-152-Portland-CT-06480/2061572482_zpid/
https://www.zillow.com/homedetails/75-Middle-Haddam-Rd-Portland-CT-06480/57875428_zpid/
https://www.zillow.com/homedetails/273-William-St-Portland-CT-06480/57876302_zpid/
https://www.zillow.com/homedetails/62-Chatham-Holw-Portland-CT-06480/243845276_zpid/
https://www.zillow.com/homedetails/79-Old-Farms-Rd-South-Glastonbury-CT-06073/174062947_zpid/
https://www.zillow.com/homedetails/201-College-St-UNIT-9-Middletown-CT-06457/57865989_zpid/
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Price
Size
Bedrooms DetachedHome
500000
3965
6
1
819900
2957
2
1
235000
1314
2
0
699000
3494
4
1
345000
1943
3
1
119900
1550
2
0
453133.3 2537.167
3.166667 0.666666667
271103 1091.253
1.602082 0.516397779
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.974826475
R Square
0.950286657
Adjusted R S
0.875716642
Standard Erro95574.22219
Observations
6
ANOVA
df
SS
MS
F
Significance F
Regression
3
3.49215E+11
1.16405E+11 12.74354922 0.073635408
Residual
2 18268863894
9134431947
Total
5
3.67484E+11
Coefficients
Standard Error
t Stat
P-value
Lower 95%
Upper 95%
Lower 95.0%
Intercept
54458.30899
112906.5739 0.482330719 0.677198691 -431339.469 540256.0873 -431339.469
Size
300.3992741
89.24813919 3.365888374 0.078070753 -83.6044756 684.4030238 -83.6044756
Bedrooms
-153590.035
45657.44747 -3.363964551 0.078149876 -350038.176 42858.10622 -350038.176
DetachedHo 184320.6642
135718.8688 1.358106399 0.307345726 -399630.497 768271.8253 -399630.497
Upper 95.0%
540256.087276048
684.40302384668
42858.1062245461
768271.82533916
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.97482647516
R Square
0.95028665667
Adjusted R Square
0.87571664168
Standard Error
95574.2221875
Observations
6
ANOVA
df
SS
MS
F
Significance F
Regression
3
349215249440 116405083147 12.743549224 0.07363540808
Residual
2
18268863893.5 9134431946.75
Total
5
367484113333
Coefficients
Standard Error
t Stat
P-value
Lower 95%
Intercept
54458.308985 112906.5738753 0.48233071925 0.6771986906
-431339.46931
Size
300.399274137 89.24813918978 3.36588837441 0.0780707528
-83.604475573
Bedrooms
-153590.03477 45657.44747203 -3.3639645508 0.0781498763
-350038.17577
DetachedHome
184320.664155 135718.8687682 1.35810639912 0.3073457264
-399630.49703
The effect of size,
bedrooms, whether the house is a detached hom
None of the x-variables are significant because their p-values are all larger than 5%
R-squared
95% of the variation in house prices can be explained by the variatio
No, this model is not significant. The p-value of F is .07 which is larger than the alpha
This means we fail to reject the null hypothesis that states that none of the variables
In other words, we not have evidence that at least one of these variables matters.
b1
300
On average, for each extra one s
b2
-153590
On average, for each extra bedro
b3
184320
On average, a detached home w
1000 square foot, 2 bedrooms, detached home
1.
What is this model telling us?
2.
Which of these variables are individually significant at 5%?
a.
Give your reason
3.
How much of the variation in house price is explained by the variation in the independe
4.
Is the overall model significant at 5%?
5.
Tell me what b1, b2, and b3 mean
231998.177728
Upper 95%
Lower 95.0%
Upper 95.0%
540256.08728 -431339.46931 540256.08728
684.40302385 -83.604475573 684.40302385
42858.106225 -350038.17577 42858.106225
768271.82534 -399630.49703 768271.82534
me on house price
ons in size, bedroom and whether the house is detached.
a of .05
es matter.
square foot in size, the house price will go up by $300
oom, the house price will decrease by $150,000.
will be worth 184,000 MORE than an attached home
ent variables?
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.95102034377
R Square
0.90443969427
Adjusted R Square
0.84073282378
Standard Error
108192.566322
Observations
6
ANOVA
df
SS
MS
F
Significance F
Regression
2
332367219112 166183609556 14.196894108 0.02954039484
Residual
3 35116894221.72
11705631407
Total
5
367484113333
Coefficients
Standard Error
t Stat
P-value
Lower 95%
Intercept
5656.14957484
121167.279935
0.046680503 0.9657015256
-379952.21278
Size
382.114032678 74.61956341616 5.12082911216 0.0144152993 144.641278783
Bedrooms
-164845.20089 50826.88170221 -3.2432680379 0.0477324553
-326599.02277
The effect of size and bedrooms on house price
Both size and bedrooms are individually significant. Both have p-val
R-squared
90% of house price can be explained by size and n
Yes, this model is significant. The p-value of F is .029 which is less th
We reject H0. we have evidence of H1 which says at least one of the
b1
382
On average, as th
b2
-165000
On average, as yo
Yes it is
1.
What is this model telling us?
2.
Which of these variables are individually significant at 5%?
a.
Give your reason
3.
How much of the variation in house price is explained by the var
4.
Is the overall model significant at 5%?
5.
Tell me what b1, b2, and b3 mean
a.
Is this model significant?
b.
Is this model better or worse than the first one (th
The model with the 3 variables is better since the
6 1000 square foot, 2 bedrooms
58079.780473
i.
How do you know?
Upper 95%
Lower 95.0%
Upper 95.0%
391264.511925 -379952.21278 391264.511925
619.586786574 144.641278783 619.586786574
-3091.3790078 -326599.02277 -3091.3790078
lue of t-stat as less than alpha (5%)
number of bedrooms
han .05 (alpha)
ese variables matters.
he size of the house increases by a square foot, the price would increase by 382$
ou get one extra bedroom, the price of the house would decrease by 165000
riation in the independent variables?
he one with size, bedroom, detachedHome)?
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
e adjusted R-squared is higher
Related Questions
A regression analysis was performed and the summary output is shown below.
Regression Statistics
Multiple R
0.7193267530.719326753
R Square
0.5174309770.517430977
Adjusted R Square
0.4991055710.499105571
Standard Error
8.6995238488.699523848
Observations
165165
ANOVA
dfdf
SSSS
MSMS
F�
Significance F�
Regression
66
12,821.56512,821.565
2136.9282136.928
28.235728.2357
8.9037E-238.9037E-23
Residual
158158
11,957.71111,957.711
75.68275.682
Total
164164
24,779.27624,779.276
Step 1 of 2 :
How many independent variables are included in the regression model
arrow_forward
Analyse the following regression
Regression Statistics
Multiple R
0.79716916
R Square
0.63547867
Adjusted R Square
0.63254686
Standard Error
198.375358
Observations
377
ANOVA
df
SS
MS
F
Significance F
Regression
3
25589530
8529843.34
216.753245
2.2501E-81
Residual
373
14678587.9
39352.7826
Total
376
40268117.9
Coefficients
Standard Error
t Stat
P-value
Lower 95%
Upper 95%
Lower 95.0%
Upper 95.0%
Intercept
-97.981174
79.2847437
-1.2358137
0.21730553
-253.88228
57.9199296
-253.88228
57.9199296
EquivArea
3.5523258
0.15149067
23.4491399
2.2549E-75
3.254443
3.85020861
3.254443
3.85020861
Years
2.04629486
0.31770115
6.44094253
3.6636E-10
1.42158501
2.67100471
1.42158501
2.67100471
Condition
15.0379067
10.2144479
1.47221924
0.14180492
-5.0472147
35.1230282
-5.0472147
35.1230282
arrow_forward
A regression analysis was performed and the summary output is shown below.
Regression Statistics
Multiple R
0.7802268560.780226856
R Square
0.6087539470.608753947
Adjusted R Square
0.5870180550.587018055
Standard Error
6.7217061336.721706133
Observations
20
ANOVA
dfdf
SSSS
MSMS
F�
Significance F�
Regression
11
1265.3871265.387
1265.3871265.387
28.006928.0069
4.9549E-054.9549E-05
Residual
1818
813.264813.264
45.18145.181
Total
1919
2078.6512078.651
Step 2 of 2:
Which measure is appropriate for determining the proportion of variation in the dependent variable explained by the set of independent variable(s) in this model?
arrow_forward
A sales manager for an advertising agency believes there is a relationship between the number of contacts that a salesperson makes and the amount of sales dollars earned. A regression ANOVA shows the following results:ANOVA
df
SS
MS
F
Significance F
Regression
1.00
13,555.42
13,555.42
156.38
0.00
Residual
8.00
693.48
86.88
Total
9.00
14,248.90
What is the value of the standard error of estimate?
Multiple Choice
9.321
8.789
8.339
86.88
arrow_forward
3. You are working on a regression when accidentally you dump coffee all over yourregression
output.
Using the remaining values, find the missing values in each blank numbered 1-9
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.860644193
R Square
# 4
Adjusted R Square
0.72282625
Standard Error
#5
Observations
32
ANOVA
df
MS
F
Significance F
Regression
2
834.0726419
417.0363209
41.4216016
3.16178E-09
Residual
#2
#1
# 3
Total
31
1126.047188
Coefficients Standard Error
t Stat
P-value
Lower 95%
Upper 95%
Intercept
36.90833048
2.190798638
16.84697527 1.62066E-16
32.42764417 41.38901679
cyl
-2.264693597
0.575889243
#7
0.000480375
-3.442519346 -1.086867847
hp
#6
0.01500073 -1.274717745 0.212528465
#8
#9
Screenshot
arrow_forward
Analyse the following regression model
Regression Statistics
Multiple R
0.7958395
R Square
0.63336051
Adjusted R Square
0.63139987
Standard Error
198.684728
Observations
377
ANOVA
df
SS
MS
F
Significance F
Regression
2
25504235.6
12752117.8
323.037801
3.2564E-82
Residual
374
14763882.3
39475.6211
Total
376
40268117.9
Coefficients
Standard Error
t Stat
P-value
Lower 95%
Upper 95%
Lower 95.0%
Upper 95.0%
Intercept
6.10606259
35.9370414
0.16991
0.86517279
-64.557919
76.770044
-64.557919
76.770044
EquivArea
3.62347902
0.1437982
25.1983622
1.3118E-82
3.34072471
3.90623332
3.34072471
3.90623332
Years
1.90428034
0.30317478
6.28113036
9.3418E-10
1.30813952
2.50042116
1.30813952
2.50042116
arrow_forward
What is the R2?
What is the adjusted R2?
Explain the purpose of having an adjusted R2?
arrow_forward
Bailey thinks her heartrate will increase as she increases her biking speed. To see if this relationship exists, she records seven different speeds and models it with a scatterplot and regression output.
Pulse, beats per minute
130
120
110
100
90
80
70
7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13
Speed, miles per hour
Regression Statistics
Multiple R
R Square
Adjusted R Square
Standard Error
Observations
97.50557%
95.07336%
94.08803%
3.884894879
7
arrow_forward
Verdadero=true
falso=false
arrow_forward
Conduct a global test on the set of independent variables. Interpret
Regression Statistics
Multiple R
0.87027387
R Square
0.75737661
Adjusted R Square
0.75615535
Standard Error
14.6932431
Observations
600
ANOVA
df
SS
MS
F
Significance F
Regression
3
401662.063
133887.354
620.160683
8.708E-183
Residual
596
128671.271
215.891394
Total
599
530333.333
Coefficients
Standard Error
t Stat
P-value
Lower 95%
Upper 95%
Lower 95.0%
Upper 95.0%
Intercept
-3.9995369
3.05935528
-1.3073137
0.19161031
-10.007965
2.00889078
-10.007965
2.00889078
Annual Income
0.0002132
3.1402E-05
6.78944156
2.7269E-11
0.00015153
0.00027487
0.00015153
0.00027487
Married
45.7808695
1.20203164
38.0862434
8.444E-162
43.4201368
48.1416023
43.4201368
48.1416023
Male
21.9175699
1.20122625
18.2459964
2.0045E-59…
arrow_forward
A multiple regression analysis produced the following output from Excel.
Summary Output
Regression Statistics
Multiple R
0.978724022
R Square
0.957900711
Adjusted R Square
0.952287472
Standard Error
67.67055418
Observations
18
ANOVA
df
SS
MS
F
Significance F
Regression
2
1562918.941
781459.5
170.6503
4.80907E-11
Residual
15
68689.55855
4579.304
Total
17
1631608.5
Coefficients
Standard Error
t Stat
P-value
Intercept
1959.709718
306.4905312
6.39403
1.21E-05
X1
-0.469657287
0.264557168
-1.77526
0.096144
X2
-2.163344882
0.278361425
-7.77171
1.23E-06
The overall…
arrow_forward
B. Would the Floor Area be a significant predictor of Assessed Value?
arrow_forward
Are the heights of individuals affected by
the heights of their parents.
Regression Statistics
Multiple R
R Square
Adjusted R Squar
0.631071992
0.398251859
0.365724932
Standard Error
2.914527039
Observations
40
ANOVA
df
MS
F
Significance F
Regression
Residual
2
208.0084392 104.0042 12.24376 8.30181E-05
37
314.2953108 8.494468
Total
39
522.30375
Coefficients
Standard Error
t Stat
P-value
Intercept
Mother's Height
Father's Height
9.804326378
12.39987353
0.79068
0.43417
0.657952815
0.147476295 4.461414 7.34E-05
0.200358437
0.138223638 1.449524 0.155615
1. Write the regression equation that represents the
above equation.
2. Is this a good predictor equation? Why or why not
(use appropriate statistics/hypothesis test to prove
your point)?
3. Use the equation to predict the height of someone
whose mother is 52 inches tall and whose father is 70
inches tall.
arrow_forward
Would the Age be a significant predictor of Assessed Value?
arrow_forward
Consider the following summary output, which was generated from a sample of 8 employees relating age to annual salary.
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.138089232
R Square
0.019068636
Adjusted R Square
-0.144419925
Standard Error
1.46902996
Observations
8.
ANOVA
df
SS
MS
F
Regression
0.251706
0.252
0.116775
Residual
6.
12.948294
2.158
Total
13.2
wkes Learning
arrow_forward
SEE MORE QUESTIONS
Recommended textbooks for you

MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc

Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning

Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning

Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON

The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman

Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman
Related Questions
- A regression analysis was performed and the summary output is shown below. Regression Statistics Multiple R 0.7193267530.719326753 R Square 0.5174309770.517430977 Adjusted R Square 0.4991055710.499105571 Standard Error 8.6995238488.699523848 Observations 165165 ANOVA dfdf SSSS MSMS F� Significance F� Regression 66 12,821.56512,821.565 2136.9282136.928 28.235728.2357 8.9037E-238.9037E-23 Residual 158158 11,957.71111,957.711 75.68275.682 Total 164164 24,779.27624,779.276 Step 1 of 2 : How many independent variables are included in the regression modelarrow_forwardAnalyse the following regression Regression Statistics Multiple R 0.79716916 R Square 0.63547867 Adjusted R Square 0.63254686 Standard Error 198.375358 Observations 377 ANOVA df SS MS F Significance F Regression 3 25589530 8529843.34 216.753245 2.2501E-81 Residual 373 14678587.9 39352.7826 Total 376 40268117.9 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -97.981174 79.2847437 -1.2358137 0.21730553 -253.88228 57.9199296 -253.88228 57.9199296 EquivArea 3.5523258 0.15149067 23.4491399 2.2549E-75 3.254443 3.85020861 3.254443 3.85020861 Years 2.04629486 0.31770115 6.44094253 3.6636E-10 1.42158501 2.67100471 1.42158501 2.67100471 Condition 15.0379067 10.2144479 1.47221924 0.14180492 -5.0472147 35.1230282 -5.0472147 35.1230282arrow_forwardA regression analysis was performed and the summary output is shown below. Regression Statistics Multiple R 0.7802268560.780226856 R Square 0.6087539470.608753947 Adjusted R Square 0.5870180550.587018055 Standard Error 6.7217061336.721706133 Observations 20 ANOVA dfdf SSSS MSMS F� Significance F� Regression 11 1265.3871265.387 1265.3871265.387 28.006928.0069 4.9549E-054.9549E-05 Residual 1818 813.264813.264 45.18145.181 Total 1919 2078.6512078.651 Step 2 of 2: Which measure is appropriate for determining the proportion of variation in the dependent variable explained by the set of independent variable(s) in this model?arrow_forward
- A sales manager for an advertising agency believes there is a relationship between the number of contacts that a salesperson makes and the amount of sales dollars earned. A regression ANOVA shows the following results:ANOVA df SS MS F Significance F Regression 1.00 13,555.42 13,555.42 156.38 0.00 Residual 8.00 693.48 86.88 Total 9.00 14,248.90 What is the value of the standard error of estimate? Multiple Choice 9.321 8.789 8.339 86.88arrow_forward3. You are working on a regression when accidentally you dump coffee all over yourregression output. Using the remaining values, find the missing values in each blank numbered 1-9 SUMMARY OUTPUT Regression Statistics Multiple R 0.860644193 R Square # 4 Adjusted R Square 0.72282625 Standard Error #5 Observations 32 ANOVA df MS F Significance F Regression 2 834.0726419 417.0363209 41.4216016 3.16178E-09 Residual #2 #1 # 3 Total 31 1126.047188 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 36.90833048 2.190798638 16.84697527 1.62066E-16 32.42764417 41.38901679 cyl -2.264693597 0.575889243 #7 0.000480375 -3.442519346 -1.086867847 hp #6 0.01500073 -1.274717745 0.212528465 #8 #9 Screenshotarrow_forwardAnalyse the following regression model Regression Statistics Multiple R 0.7958395 R Square 0.63336051 Adjusted R Square 0.63139987 Standard Error 198.684728 Observations 377 ANOVA df SS MS F Significance F Regression 2 25504235.6 12752117.8 323.037801 3.2564E-82 Residual 374 14763882.3 39475.6211 Total 376 40268117.9 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 6.10606259 35.9370414 0.16991 0.86517279 -64.557919 76.770044 -64.557919 76.770044 EquivArea 3.62347902 0.1437982 25.1983622 1.3118E-82 3.34072471 3.90623332 3.34072471 3.90623332 Years 1.90428034 0.30317478 6.28113036 9.3418E-10 1.30813952 2.50042116 1.30813952 2.50042116arrow_forward
- What is the R2? What is the adjusted R2? Explain the purpose of having an adjusted R2?arrow_forwardBailey thinks her heartrate will increase as she increases her biking speed. To see if this relationship exists, she records seven different speeds and models it with a scatterplot and regression output. Pulse, beats per minute 130 120 110 100 90 80 70 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 Speed, miles per hour Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 97.50557% 95.07336% 94.08803% 3.884894879 7arrow_forwardVerdadero=true falso=falsearrow_forward
- Conduct a global test on the set of independent variables. Interpret Regression Statistics Multiple R 0.87027387 R Square 0.75737661 Adjusted R Square 0.75615535 Standard Error 14.6932431 Observations 600 ANOVA df SS MS F Significance F Regression 3 401662.063 133887.354 620.160683 8.708E-183 Residual 596 128671.271 215.891394 Total 599 530333.333 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -3.9995369 3.05935528 -1.3073137 0.19161031 -10.007965 2.00889078 -10.007965 2.00889078 Annual Income 0.0002132 3.1402E-05 6.78944156 2.7269E-11 0.00015153 0.00027487 0.00015153 0.00027487 Married 45.7808695 1.20203164 38.0862434 8.444E-162 43.4201368 48.1416023 43.4201368 48.1416023 Male 21.9175699 1.20122625 18.2459964 2.0045E-59…arrow_forwardA multiple regression analysis produced the following output from Excel. Summary Output Regression Statistics Multiple R 0.978724022 R Square 0.957900711 Adjusted R Square 0.952287472 Standard Error 67.67055418 Observations 18 ANOVA df SS MS F Significance F Regression 2 1562918.941 781459.5 170.6503 4.80907E-11 Residual 15 68689.55855 4579.304 Total 17 1631608.5 Coefficients Standard Error t Stat P-value Intercept 1959.709718 306.4905312 6.39403 1.21E-05 X1 -0.469657287 0.264557168 -1.77526 0.096144 X2 -2.163344882 0.278361425 -7.77171 1.23E-06 The overall…arrow_forwardB. Would the Floor Area be a significant predictor of Assessed Value?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman

MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc

Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning

Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning

Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON

The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman

Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman