PHY 151 Lab M1

pdf

School

University at Buffalo *

*We aren’t endorsed by this school

Course

151

Subject

Statistics

Date

Jan 9, 2024

Type

pdf

Pages

4

Uploaded by ConstableTitaniumDolphin38

Report
PHY 151 Lab M1 VI-1 -Pan with Teflon bottom: Mass of pan with Teflon bottom : m p = 105.3g m(g) m s (g) m t (g) 200 40 305.3 200 35 305.3 200 45 305.3 200 45 305.3 200 65 305.3 400 100 505.3 400 100 505.3 400 110 505.3 400 100 505.3 400 110 505.3 600 160 705.3 600 170 705.3 600 170 705.3 600 160 705.3 600 170 705.3 800 210 905.3 800 210 905.3 800 210 905.3 800 220 905.3 800 195 905.3 1000 260 1105.3 1000 260 1105.3 1000 280 1105.3 1000 240 1105.3 1000 240 1105.3 -calculation: m t = m p + m, for example, m = 200g, and m p is constant at 105.3g m t = m p + m =105.3g +200g =305.3g y = 0.2625x - 28.941 0 50 100 150 200 250 300 0 200 400 600 800 1000 1200 m s (gram) m t (gram) m s vs. m t Teflon Bottom
Here is the data of slope s, intercept b, uncertainty of slope and uncertainty of intercept which calculating from Excel using LINEST function: slope s 0.2625 uncertainty of slope 𝜎 ? 0.00801 intercept b -28.9413 uncertainty of intercept 𝜎 ? 6.086939 Since the slope s of the plot m s vs. m t Teflon Bottom is 𝜇 𝑘 base on the formula of ? ? = 𝜇 𝑘 ? ? and 𝜇 𝑘 = 𝑚 ? 𝑚 ? . Then 𝜇 𝑘 = ? = 0.2625 , 𝜎 𝜇 𝑘 = 𝜎 ? = 0.00801. So 𝜇 𝑘 ± 𝜎 𝜇 𝑘 = 0.26 ± 0.01 . VI-2 -Pan with Rubber bottom: Mass of pan with Rubber bottom : m p ’ = 125.9g m(g) m s (g) m t (g) 100 70 225.9 100 80 225.9 100 50 225.9 100 80 225.9 100 80 225.9 200 95 325.9 200 105 325.9 200 110 325.9 200 100 325.9 200 120 325.9 300 150 425.9 300 140 425.9 300 140 425.9 300 140 425.9 300 160 425.9 400 190 525.9 400 190 525.9 400 190 525.9 400 200 525.9 400 195 525.9 500 210 625.9 500 210 625.9 500 220 625.9 500 230 625.9 500 240 625.9 -calculation: m t = m p ’ + m, for example, m = 100g, and m p is constant at 125.9g m t = m p ’ + m =125.9g +100g =225.9g
Here is the data of slope s, intercept b, uncertainty of slope and uncertainty of intercept which calculating from Excel using LINEST function: slope s 0.387 uncertainty of slope 𝜎 ? 0.014654 intercept b -17.0233 uncertainty of intercept 𝜎 ? 6.576206 Since the slope s of the plot m s vs. m t Teflon Bottom is 𝜇 𝑘 base on the formula of ? ? = 𝜇 𝑘 ? ? and 𝜇 𝑘 = 𝑚 ? 𝑚 ? . Then 𝜇 𝑘 = ? = 0.387 , 𝜎 𝜇 𝑘 = 𝜎 ? = 0.014654. So 𝜇 𝑘 ± 𝜎 𝜇 𝑘 = 0.4 ± 0.02 . VI-3 -Pan with Teflon bottom: Mass of pan with Teflon bottom : m p = 105.3g, L = 58 cm, d = 16.5 cm. -data table m(g) mt(g) H(cm) y(cm) 200 305.3 29.5 13 12.95 0.22995 400 505.3 33 16.5 16.53 0.2968 600 705.3 32 15.5 15.5 0.2773 800 905.3 34 17.5 17.56 0.3165 1000 1105.3 33.3 16.8 16.84 0.3027 -calculation: 1) m t = m p + m, for example, m = 200g, and m p is constant at 105.3g m t = m p + m =105.3g +200g =305.3g 2) y = H – d, for example, H=29.5cm, d =16.5cm, y = H – d = 29.5cm – 16.5 cm = 13cm. 3) 𝜃 = sin −1 𝑦 𝐿 = sin −1 𝐻−? 𝐿 , for example, H=29.5cm, d =16.5cm, L=58 cm, 𝜃 = sin −1 𝐻−? 𝐿 = sin −1 29.5?𝑚−16.5?𝑚 58?𝑚 = 12.95° . 4) 𝜇 ? = ?𝑎?𝜃, for example, 𝜃 = 12.95°,𝜇 ? = ?𝑎?𝜃 = tan(12.95°) = 0.22995 5) 𝜇 ? ̅̅̅ = 𝜇 ? 5 = 0.22995+0.2968+0.2773+0.3165+0.3027 5 = 0.28465 y = 0.387x - 17.023 0 50 100 150 200 250 300 0 100 200 300 400 500 600 700 m s (gram) m t (gram) m s vs. m t Rubbrt Bottom 𝜃 (deg) 𝜇 ?
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
6) Excel returns the standard deviation of 𝜎 𝜇 ? = 0.033667 7)The standard deviation of the mean 𝜎 𝜇 ? ̅̅̅ of 𝜇 ? ∶ ? = 5, 𝜎 𝜇 ? ̅̅̅ = 𝜎 𝜇 ? ? = 0.033667 5 = 0.151 8) 𝜇 ? ̅̅̅ ± 𝜎 𝜇 ? ̅̅̅ = 0.3 ± 0.02 VI-4 -Pan with Rubber bottom: Mass of pan with Rubber bottom : m p ’ = 125.9 g, L = 58 cm, d = 16.5 cm. -data table m(g) mt(g) H(cm) y(cm) 100 225.9 41.2 24.7 25.21 0.47078 200 325.9 43.3 26.8 27.52 0.52101 300 425.9 49.5 33 34.68 0.69192 400 525.9 45.4 28.9 29.89 0.5748 500 625.9 51.5 35 37.12 0.75684 -calculation: 1) m t = m p ’ + m, for example, m = 100g, and m p is constant at 125.9g m t = m p ’ + m =125.9g +100g =225.9g 2) y = H – d, for example, H=41.2cm, d =16.5cm, y = H – d = 41.2cm – 16.5 cm = 24.7cm. 3) 𝜃 = sin −1 𝑦 𝐿 = sin −1 𝐻−? 𝐿 , for example, H=41.2cm, d =16.5cm, L=58 cm, 𝜃 = sin −1 𝐻−? 𝐿 = sin −1 41.2?𝑚−16.5?𝑚 58?𝑚 = 25.21° . 4) 𝜇 ? = ?𝑎?𝜃, for example, 𝜃 = 25.21°, 𝜇 ? = ?𝑎?𝜃 = tan(25.21°) = 0.47078 5) 𝜇 ? ̅̅̅ = 𝜇 ? 5 = 0.47078+0.52101+0.69192+0.5748+0.75684 5 = 0.60307 6) Excel returns the standard deviation of 𝜎 𝜇 ? = 0.118926 7)The standard deviation of the mean 𝜎 𝜇 ? ̅̅̅ of 𝜇 ? ∶ ? = 5, 𝜎 𝜇 ? ̅̅̅ = 𝜎 𝜇 ? ? = 0.118926 5 = 0.0532 8) 𝜇 ? ̅̅̅ ± 𝜎 𝜇 ? ̅̅̅ = 0.6 ± 0.05 𝜃 (deg) 𝜇 ?