HCM 3001 Fall 2023 Class Exercises
xlsx
keyboard_arrow_up
School
Humber College *
*We aren’t endorsed by this school
Course
3001
Subject
Statistics
Date
Feb 20, 2024
Type
xlsx
Pages
11
Uploaded by SargentBook16495
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.60449274
R Square
0.36541148
Adjusted R S
0.290754
Standard Erro15.0194881
Observations
20
ANOVA
df
SS
MS
F
Significance F
Regression
2 2208.25463 1104.12732 4.89450633 0.02094999
Residual
17 3834.94537 225.585022
Total
19
6043.2
CoefficientsStandard Error
t Stat
P-value
Lower 95%
Upper 95%
Lower 95.0%
Intercept
-30.5545893 17.9916466 -1.69826531 0.10768462 -68.5136456 7.40446695 -68.5136456
0.24659898 0.24583397 1.00311188
0.3298723 -0.27206537 0.76526333 -0.27206537
36.8256268
12.724272 2.89412446 0.01008738 9.97975957
63.671494 9.97975957
Medication Errors Case-Mix Index
# of Falls
Intercepts + (Medication Error *20) + (CMI*1.5)
y=a+ (b1*x1) + (b2*x2)
29.6158304
Upper 95.0%
7.40446695
0.76526333
63.671494
Example 5: Multiple Linear Regression
Using linear regression, what is the prediction for Falls at a hospital with 20 medication errors and a CMI of 1.5
Hospital
1
26
6
1.392
2
43
5
1.392
3
8
26
0.889
4
16
17
0.889
5
18
12
1.38
6
11
9
1.38
7
24
21
1.628
8
28
7
1.628
9
8
1
1.08
10
20
26
1.08
11
22
44
1.72
12
86
39
1.72
13
18
3
1.22
14
14
6
1.334
15
17
4
1.689
16
46
4
1.689
17
8
24
1.12
18
16
36
1.12
19
29
40
1.505
20
26
25
1.505
Patient Falls Medication Errors Case-Mix Index
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
5?
Example 4: Linear Prediction of ED Visits
Using linear regression, what is the prediction for total ED visits in Year 6?
Year
ED Visits
1
16,067
2
15,194
3
13,844
4
12,779
5
10,813
6
?
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.91081211
R Square
0.82957871
Adjusted R S
0.81253658
Standard Erro0.04141092
Observations
12
ANOVA
df
SS
MS
F
Significance F
Regression
1 0.08347636 0.08347636 48.6781134 3.82037E-05
Residual
10 0.01714864 0.00171486
Total
11
0.100625
CoefficientsStandard Error
t Stat
P-value
Lower 95%
Upper 95%
Lower 95.0%
Intercept
0.06040655
0.0274101 2.20380646 0.05210426 -0.00066695 0.12148005 -0.00066695
0.01557642 0.00223255 6.97697021 3.82037E-05 0.01060199 0.02055084 0.01060199
Revenue in $M (x)
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
b
a
profit
revenue
intercept
y=a+bx
y
10 0.06040655
0.21617072
Upper 95.0%
0.12148005
0.02055084
Example 3: Linear Regression
Using linear regression, what is the predicted profit for a clinic with $10M in revenues?
Private Cosmetic Surgery Clinic Revenues and Profits
Clinic
x*y
1
$7.10
$0.16
1.14
50.41
2
$2.02
$0.11
0.22
4.08
3
$6.06
$0.13
0.79
36.72
4
$4.01
$0.16
0.64
16.08
5
$14.09
$0.26
3.66
198.53
6
$15.09
$0.28
4.23
227.71
7
$16.02
$0.24
3.84
256.64
8
$12.03
$0.21
2.53
144.72
9
$14.00
$0.27
3.78
196.00
10
$20.01
$0.44
8.80
400.40
11
$15.09
$0.35
5.28
227.71
12
$7.06
$0.18
1.27
49.84
Total
$133
$2.79
36.18
1,808.84
Revenue in $M (x)
Profit in $M
(y)
x
2
$0.00
$0.00
$0.05
$0.10
$0.15
$0.20
$0.25
$0.30
$0.35
$0.40
$0.45
$0.50
1
$0.00
$5.00
$10.00
$15.00
$20.00
$25.00
$5.00
$10.00
$15.00
$20.00
$25.00
Profit in $M
(y)
1
2
3
4
5
6
7
8
9
10
11
12
Chart Title
Revenue in $M (x)
Profit in $M
(y)
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Example 2: Weighted Moving Average
Using a 3-period weighted moving average, what is the prediction for total ED visits in Year 6?
Period
Visits
Weights
1
16,067
0.0
0
2
15,194
0.0
0
3
13,844
0.10
1,384
4
12,779
0.30
3,834
5
10,813
0.60
6,488
6
12,478
1.00
11,706
3-period Moving Average
Prediction
3-period Weighted Moving Average
Prediction
Example 1: Moving Average
Using a 3-period moving average, what is the prediction for total ED visits in Year 6?
Formula 1
Formula 2
Year
ED Visits
1
16,067
2
15,194
3
13,844
4
12,779
5
10,813
6
?
12,478
12,478
3-period Moving Average Prediction
3-period Moving Average Prediction
Related Documents
Related Questions
**Please complete table**
arrow_forward
A regression analysis was performed and the summary output is shown below.
Regression Statistics
Multiple R
0.7802268560.780226856
R Square
0.6087539470.608753947
Adjusted R Square
0.5870180550.587018055
Standard Error
6.7217061336.721706133
Observations
20
ANOVA
dfdf
SSSS
MSMS
F�
Significance F�
Regression
11
1265.3871265.387
1265.3871265.387
28.006928.0069
4.9549E-054.9549E-05
Residual
1818
813.264813.264
45.18145.181
Total
1919
2078.6512078.651
Step 2 of 2:
Which measure is appropriate for determining the proportion of variation in the dependent variable explained by the set of independent variable(s) in this model?
arrow_forward
A regression analysis was performed and the summary output is shown below.
Regression Statistics
Multiple R
0.7802268560.780226856
R Square
0.6087539470.608753947
Adjusted R Square
0.5870180550.587018055
Standard Error
6.7217061336.721706133
Observations
20
ANOVA
dfdf
SSSS
MSMS
F�
Significance F�
Regression
11
1265.3871265.387
1265.3871265.387
28.006928.0069
4.9549E-054.9549E-05
Residual
1818
813.264813.264
45.18145.181
Total
1919
2078.6512078.651
Step 1 of 2:
How many independent variables are included in the regression model
arrow_forward
Conduct a global test on the set of independent variables. Interpret
Regression Statistics
Multiple R
0.87027387
R Square
0.75737661
Adjusted R Square
0.75615535
Standard Error
14.6932431
Observations
600
ANOVA
df
SS
MS
F
Significance F
Regression
3
401662.063
133887.354
620.160683
8.708E-183
Residual
596
128671.271
215.891394
Total
599
530333.333
Coefficients
Standard Error
t Stat
P-value
Lower 95%
Upper 95%
Lower 95.0%
Upper 95.0%
Intercept
-3.9995369
3.05935528
-1.3073137
0.19161031
-10.007965
2.00889078
-10.007965
2.00889078
Annual Income
0.0002132
3.1402E-05
6.78944156
2.7269E-11
0.00015153
0.00027487
0.00015153
0.00027487
Married
45.7808695
1.20203164
38.0862434
8.444E-162
43.4201368
48.1416023
43.4201368
48.1416023
Male
21.9175699
1.20122625
18.2459964
2.0045E-59…
arrow_forward
Analyse the following regression
Regression Statistics
Multiple R
0.79716916
R Square
0.63547867
Adjusted R Square
0.63254686
Standard Error
198.375358
Observations
377
ANOVA
df
SS
MS
F
Significance F
Regression
3
25589530
8529843.34
216.753245
2.2501E-81
Residual
373
14678587.9
39352.7826
Total
376
40268117.9
Coefficients
Standard Error
t Stat
P-value
Lower 95%
Upper 95%
Lower 95.0%
Upper 95.0%
Intercept
-97.981174
79.2847437
-1.2358137
0.21730553
-253.88228
57.9199296
-253.88228
57.9199296
EquivArea
3.5523258
0.15149067
23.4491399
2.2549E-75
3.254443
3.85020861
3.254443
3.85020861
Years
2.04629486
0.31770115
6.44094253
3.6636E-10
1.42158501
2.67100471
1.42158501
2.67100471
Condition
15.0379067
10.2144479
1.47221924
0.14180492
-5.0472147
35.1230282
-5.0472147
35.1230282
arrow_forward
What is the value of the Coefficient of Determination (Adjusted for Degrees of Freedom) ? (four decimal places, +/- 0.0050)
arrow_forward
Analyse the following regression model
Regression Statistics
Multiple R
0.7958395
R Square
0.63336051
Adjusted R Square
0.63139987
Standard Error
198.684728
Observations
377
ANOVA
df
SS
MS
F
Significance F
Regression
2
25504235.6
12752117.8
323.037801
3.2564E-82
Residual
374
14763882.3
39475.6211
Total
376
40268117.9
Coefficients
Standard Error
t Stat
P-value
Lower 95%
Upper 95%
Lower 95.0%
Upper 95.0%
Intercept
6.10606259
35.9370414
0.16991
0.86517279
-64.557919
76.770044
-64.557919
76.770044
EquivArea
3.62347902
0.1437982
25.1983622
1.3118E-82
3.34072471
3.90623332
3.34072471
3.90623332
Years
1.90428034
0.30317478
6.28113036
9.3418E-10
1.30813952
2.50042116
1.30813952
2.50042116
arrow_forward
3. You are working on a regression when accidentally you dump coffee all over yourregression
output.
Using the remaining values, find the missing values in each blank numbered 1-9
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.860644193
R Square
# 4
Adjusted R Square
0.72282625
Standard Error
#5
Observations
32
ANOVA
df
MS
F
Significance F
Regression
2
834.0726419
417.0363209
41.4216016
3.16178E-09
Residual
#2
#1
# 3
Total
31
1126.047188
Coefficients Standard Error
t Stat
P-value
Lower 95%
Upper 95%
Intercept
36.90833048
2.190798638
16.84697527 1.62066E-16
32.42764417 41.38901679
cyl
-2.264693597
0.575889243
#7
0.000480375
-3.442519346 -1.086867847
hp
#6
0.01500073 -1.274717745 0.212528465
#8
#9
Screenshot
arrow_forward
Verdadero=true
falso=false
arrow_forward
What is the R2?
What is the adjusted R2?
Explain the purpose of having an adjusted R2?
arrow_forward
What is correlation and regression? What information does it provide? Why is it important?
What does this regression analaysis tell us? What is the significance of the coeffecients?
arrow_forward
**Please complete table**
arrow_forward
A multiple regression analysis produced the following tables.
Summary Output
Regression Statistics
Multiple R
0.978724022
R Square
0.957900711
Adjusted R Square
0.952287472
Standard Error
67.67055418
Observations
18
ANOVA
df
SS
MS
F
Significance F
Regression
2
1562918.941
781459.5
170.6503
4.80907E-11
Residual
15
68689.55855
4579.304
Total
17
1631608.5
Coefficients
Standard Error
t Stat
P-value
Intercept
1959.709718
306.4905312
6.39403
1.21E-05
X1
-0.469657287
0.264557168
-1.77526
0.096144
X2
-2.163344882
0.278361425
-7.77171
1.23E-06
The regression equation for…
arrow_forward
A multiple regression analysis produced the following tables.
Summary Output
Regression Statistics
Multiple R
0.978724022
R Square
0.957900711
Adjusted R Square
0.952287472
Standard Error
67.67055418
Observations
18
ANOVA
df
SS
MS
F
Significance F
Regression
2
1562918.941
781459.5
170.6503
4.80907E-11
Residual
15
68689.55855
4579.304
Total
17
1631608.5
Coefficients
Standard Error
t Stat
P-value
Intercept
1959.709718
306.4905312
6.39403
1.21E-05
X1
-0.469657287
0.264557168
-1.77526
0.096144
X2
-2.163344882
0.278361425
-7.77171
1.23E-06
For x1= 360 and x2 = 220, the…
arrow_forward
A multiple regression analysis produced the following tables.
Summary Output
Regression Statistics
Multiple R
0.978724022
R Square
0.957900711
Adjusted R Square
0.952287472
Standard Error
67.67055418
Observations
18
ANOVA
df
SS
MS
F
Significance F
Regression
2
1562918.941
781459.5
170.6503
4.80907E-11
Residual
15
68689.55855
4579.304
Total
17
1631608.5
Coefficients
Standard Error
t Stat
P-value
Intercept
1959.709718
306.4905312
6.39403
1.21E-05
X1
-0.469657287
0.264557168
-1.77526
0.096144
X2
-2.163344882
0.278361425
-7.77171
1.23E-06
Using α = 0.01 to test the…
arrow_forward
A multiple regression analysis produced the following tables.
Summary Output
Regression Statistics
Multiple R
0.978724022
R Square
0.957900711
Adjusted R Square
0.952287472
Standard Error
67.67055418
Observations
18
ANOVA
df
SS
MS
F
Significance F
Regression
2
1562918.941
781459.5
170.6503
4.80907E-11
Residual
15
68689.55855
4579.304
Total
17
1631608.5
Coefficients
Standard Error
t Stat
P-value
Intercept
1959.709718
306.4905312
6.39403
1.21E-05
X1
-0.469657287
0.264557168
-1.77526
0.096144
X2
-2.163344882
0.278361425
-7.77171
1.23E-06
These results indicate that…
arrow_forward
Bailey thinks her heartrate will increase as she increases her biking speed. To see if this relationship exists, she records seven different speeds and models it with a scatterplot and regression output.
Pulse, beats per minute
130
120
110
100
90
80
70
7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13
Speed, miles per hour
Regression Statistics
Multiple R
R Square
Adjusted R Square
Standard Error
Observations
97.50557%
95.07336%
94.08803%
3.884894879
7
arrow_forward
The following presents a sample of the number of defective flash drives produced by a small manufacturing company over the last 30 weeks. Regression analysis for the data have been calculated.
Present an analysis of these regression results. What do they mean? Why is it important?
arrow_forward
SEE MORE QUESTIONS
Recommended textbooks for you

MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc

Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning

Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning

Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON

The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman

Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman
Related Questions
- **Please complete table**arrow_forwardA regression analysis was performed and the summary output is shown below. Regression Statistics Multiple R 0.7802268560.780226856 R Square 0.6087539470.608753947 Adjusted R Square 0.5870180550.587018055 Standard Error 6.7217061336.721706133 Observations 20 ANOVA dfdf SSSS MSMS F� Significance F� Regression 11 1265.3871265.387 1265.3871265.387 28.006928.0069 4.9549E-054.9549E-05 Residual 1818 813.264813.264 45.18145.181 Total 1919 2078.6512078.651 Step 2 of 2: Which measure is appropriate for determining the proportion of variation in the dependent variable explained by the set of independent variable(s) in this model?arrow_forwardA regression analysis was performed and the summary output is shown below. Regression Statistics Multiple R 0.7802268560.780226856 R Square 0.6087539470.608753947 Adjusted R Square 0.5870180550.587018055 Standard Error 6.7217061336.721706133 Observations 20 ANOVA dfdf SSSS MSMS F� Significance F� Regression 11 1265.3871265.387 1265.3871265.387 28.006928.0069 4.9549E-054.9549E-05 Residual 1818 813.264813.264 45.18145.181 Total 1919 2078.6512078.651 Step 1 of 2: How many independent variables are included in the regression modelarrow_forward
- Conduct a global test on the set of independent variables. Interpret Regression Statistics Multiple R 0.87027387 R Square 0.75737661 Adjusted R Square 0.75615535 Standard Error 14.6932431 Observations 600 ANOVA df SS MS F Significance F Regression 3 401662.063 133887.354 620.160683 8.708E-183 Residual 596 128671.271 215.891394 Total 599 530333.333 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -3.9995369 3.05935528 -1.3073137 0.19161031 -10.007965 2.00889078 -10.007965 2.00889078 Annual Income 0.0002132 3.1402E-05 6.78944156 2.7269E-11 0.00015153 0.00027487 0.00015153 0.00027487 Married 45.7808695 1.20203164 38.0862434 8.444E-162 43.4201368 48.1416023 43.4201368 48.1416023 Male 21.9175699 1.20122625 18.2459964 2.0045E-59…arrow_forwardAnalyse the following regression Regression Statistics Multiple R 0.79716916 R Square 0.63547867 Adjusted R Square 0.63254686 Standard Error 198.375358 Observations 377 ANOVA df SS MS F Significance F Regression 3 25589530 8529843.34 216.753245 2.2501E-81 Residual 373 14678587.9 39352.7826 Total 376 40268117.9 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -97.981174 79.2847437 -1.2358137 0.21730553 -253.88228 57.9199296 -253.88228 57.9199296 EquivArea 3.5523258 0.15149067 23.4491399 2.2549E-75 3.254443 3.85020861 3.254443 3.85020861 Years 2.04629486 0.31770115 6.44094253 3.6636E-10 1.42158501 2.67100471 1.42158501 2.67100471 Condition 15.0379067 10.2144479 1.47221924 0.14180492 -5.0472147 35.1230282 -5.0472147 35.1230282arrow_forwardWhat is the value of the Coefficient of Determination (Adjusted for Degrees of Freedom) ? (four decimal places, +/- 0.0050)arrow_forward
- Analyse the following regression model Regression Statistics Multiple R 0.7958395 R Square 0.63336051 Adjusted R Square 0.63139987 Standard Error 198.684728 Observations 377 ANOVA df SS MS F Significance F Regression 2 25504235.6 12752117.8 323.037801 3.2564E-82 Residual 374 14763882.3 39475.6211 Total 376 40268117.9 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 6.10606259 35.9370414 0.16991 0.86517279 -64.557919 76.770044 -64.557919 76.770044 EquivArea 3.62347902 0.1437982 25.1983622 1.3118E-82 3.34072471 3.90623332 3.34072471 3.90623332 Years 1.90428034 0.30317478 6.28113036 9.3418E-10 1.30813952 2.50042116 1.30813952 2.50042116arrow_forward3. You are working on a regression when accidentally you dump coffee all over yourregression output. Using the remaining values, find the missing values in each blank numbered 1-9 SUMMARY OUTPUT Regression Statistics Multiple R 0.860644193 R Square # 4 Adjusted R Square 0.72282625 Standard Error #5 Observations 32 ANOVA df MS F Significance F Regression 2 834.0726419 417.0363209 41.4216016 3.16178E-09 Residual #2 #1 # 3 Total 31 1126.047188 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 36.90833048 2.190798638 16.84697527 1.62066E-16 32.42764417 41.38901679 cyl -2.264693597 0.575889243 #7 0.000480375 -3.442519346 -1.086867847 hp #6 0.01500073 -1.274717745 0.212528465 #8 #9 Screenshotarrow_forwardVerdadero=true falso=falsearrow_forward
- What is the R2? What is the adjusted R2? Explain the purpose of having an adjusted R2?arrow_forwardWhat is correlation and regression? What information does it provide? Why is it important? What does this regression analaysis tell us? What is the significance of the coeffecients?arrow_forward**Please complete table**arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman

MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc

Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning

Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning

Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON

The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman

Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman