Tutorial 9_Solution
pdf
keyboard_arrow_up
School
The University of Hong Kong *
*We aren’t endorsed by this school
Course
2901
Subject
Statistics
Date
Nov 24, 2024
Type
Pages
4
Uploaded by KidNeutron12719
THE UNIVERSITY OF HONG KONG
DEPARTMENT OF STATISTICS AND ACTUARIAL SCIENCE
STAT1801/2901 Probability and Statistics: Foundations of Actuarial Science
Example Class 9 (Suggested Solution)
1. Consider
X
1
, X
2
, X
3
be independent integer-valued random variables such that
p
ij
:=
P
(
X
i
≥
j
),
p
i
1
= 1 and
p
i
4
= 0 for
i
= 1
,
2
,
3.
(a) Find the distribution of
X
min
:= min
{
X
1
, X
2
, X
3
}
.
(b) Find the distribution of
X
max
:= max
{
X
1
, X
2
, X
3
}
.
Solution:
(a) Consider
P
(
X
min
≥
x
) =
P
(
X
1
≥
x, X
2
≥
x, X
3
≥
x
),
P
(
X
min
= 3)
=
P
(
X
min
≥
3)
=
P
(
X
1
≥
3
, X
2
≥
3
, X
3
≥
3)
=
p
13
p
23
p
33
P
(
X
min
= 2)
=
P
(
X
min
≥
2)
-
P
(
X
min
≥
3)
=
P
(
X
1
≥
2
, X
2
≥
2
, X
3
≥
2)
-
p
13
p
23
p
33
=
p
12
p
22
p
32
-
p
13
p
23
p
33
P
(
X
min
= 1)
=
P
(
X
min
≥
1)
-
P
(
X
min
≥
2)
=
P
(
X
1
≥
1
, X
2
≥
1
, X
3
≥
1)
-
p
12
p
22
p
32
=
1
-
p
12
p
22
p
32
(b) Consider
P
(
X
max
≤
x
) =
P
(
X
1
≤
x, X
2
≤
x, X
3
≤
x
),
P
(
X
max
= 1)
=
P
(
X
max
≤
1)
=
P
(
X
1
≤
1
, X
2
≤
1
, X
3
≤
1)
=
P
(
X
1
≤
1)
P
(
X
2
≤
1)
P
(
X
3
≤
1)
=
(1
-
p
12
)(1
-
p
22
)(1
-
p
32
)
P
(
X
max
= 2)
=
P
(
X
max
≤
2)
-
P
(
X
max
≤
1)
=
P
(
X
1
≤
2
, X
2
≤
2
, X
3
≤
2)
-
(1
-
p
12
)(1
-
p
22
)(1
-
p
32
)
=
P
(
X
1
≤
2)
P
(
X
2
≤
2)
P
(
X
3
≤
2)
-
(1
-
p
12
)(1
-
p
22
)(1
-
p
32
)
=
(1
-
p
13
)(1
-
p
23
)(1
-
p
33
)
-
(1
-
p
12
)(1
-
p
22
)(1
-
p
32
)
P
(
X
max
= 3)
=
P
(
X
max
≤
3)
-
P
(
X
max
≤
2)
=
1
-
(1
-
p
13
)(1
-
p
23
)(1
-
p
33
)
2. Let
X
1
∼
Gamma(3
.
9
,
1) and
X
2
∼
Gamma(6
.
1
,
1) be two independent random variables.
(a) Determine the joint pdf of
Y
1
=
X
1
/X
2
and
Y
2
=
X
1
+
X
2
.
(b) Determine the marginal pdf of
Y
2
.
(c) Find
P
(
Y
2
≥
20
.
00)
.
Solution:
1
(a) From the transformation, we have
X
1
=
Y
1
Y
2
1 +
Y
1
and
X
2
=
Y
2
1 +
Y
1
.
The inverse of Jacobian determinant is given by
J
-
1
(
y
1
, y
2
) = [
J
(
x
1
, x
2
)]
-
1
=
∂x
1
∂y
1
∂x
1
∂y
2
∂x
2
∂y
1
∂x
2
∂y
2
=
y
2
(1 +
y
1
)
2
y
1
1 +
y
1
-
y
2
(1 +
y
1
)
2
1
1 +
y
1
=
y
2
(1 +
y
1
)
2
.
The joint pdf of (
Y
1
, Y
2
) is
f
(
y
1
, y
2
)
=
f
(
x
1
, x
2
)
× |
J
-
1
(
y
1
, y
2
)
|
=
f
(
x
1
)
f
(
x
2
)
× |
J
-
1
(
y
1
, y
2
)
|
=
1
Γ(3
.
1)
x
3
.
1
-
1
1
e
-
x
1
×
1
Γ(6
.
9)
x
6
.
9
-
1
2
e
-
x
2
× |
J
-
1
(
y
1
, y
2
)
|
=
1
Γ(3
.
1)Γ(6
.
9)
x
2
.
1
1
x
5
.
9
2
e
-
(
x
1
+
x
2
)
×
y
2
(1 +
y
1
)
2
=
1
Γ(3
.
1)Γ(6
.
9)
y
1
y
2
1 +
y
1
2
.
1
y
2
1 +
y
1
5
.
9
y
2
(1 +
y
1
)
2
e
-
y
2
=
1
Γ(3
.
1)Γ(6
.
9)
1
1 +
y
1
10
y
2
.
1
1
y
9
2
e
-
y
2
,
y
1
>
0
, y
2
>
0
.
(b) Since the inner integral does not involve
y
2
,
1
=
Z
∞
0
Z
∞
0
1
Γ(3
.
1)Γ(6
.
9)
1
1 +
y
1
10
y
2
.
1
1
y
9
2
e
-
y
2
dy
1
dy
2
=
"
Z
∞
0
1
Γ(3
.
1)Γ(6
.
9)
1
1 +
y
1
10
y
2
.
1
1
dy
1
#
Z
∞
0
y
9
2
e
-
y
2
dy
2
=
"
Z
∞
0
Γ(10)
Γ(3
.
1)Γ(6
.
9)
1
1 +
y
1
10
y
2
.
1
1
dy
1
#
Z
∞
0
1
Γ(10)
y
9
2
e
-
y
2
dy
2
.
The second integrand is the probability density function of Gamma(10
,
1). Therefore, the second integral
is 1. Hence, the first integral is also 1. Thus, the marginal density of
Y
2
is
f
(
y
2
)
=
Z
∞
0
1
Γ(3
.
1)Γ(6
.
9)
1
1 +
y
1
10
y
2
.
1
1
y
9
2
e
-
y
2
dy
1
=
y
9
2
e
-
y
2
Z
∞
0
1
Γ(3
.
1)Γ(6
.
9)
1
1 +
y
1
10
y
2
.
1
1
dy
1
=
1
Γ(10)
y
9
2
e
-
y
2
"
Z
∞
0
Γ(10)
Γ(3
.
1)Γ(6
.
9)
1
1 +
y
1
10
y
2
.
1
1
dy
1
#
=
1
Γ(10)
y
9
2
e
-
y
2
shows that
Y
2
∼
Gamma(10
,
1).
(c) Consider 2
Y
2
∼
Gamma(10
,
0
.
5), which is equivalent to
χ
2
20
,
P
(
Y
2
≥
20
.
00)
=
P
(2
Y
2
≥
40
.
00)
=
0
.
005
2
since from the
χ
2
table, we could find the upper 0
.
005 quantile to be 40
.
00.
3. Suppose that
X
and
Y
are random variables with the joint probability density function
f
(
x, y
) =
x
e
-
x
(
y
+1)
,
for
x >
0,
y >
0
,
0
,
otherwise
.
(a) Are
X
and
Y
independent? Why?
(b) Let
Z
=
XY
. Determine the pdf of
Z
.
(c) Let
U
=
X
(
Y
+ 1),
V
=
1
Y
+ 1
. Determine the joint pdf of
U
and
V
.
Solution:
(a) The marginal pdf of
X
and
Y
are given by
f
X
(
x
)
=
Z
∞
0
x
e
-
x
(
y
+1)
dy
=
h
-
e
-
x
(
y
+1)
i
|
∞
y
=0
= e
-
x
,
x >
0
,
f
Y
(
y
)
=
Z
∞
0
x
e
-
x
(
y
+1)
dx
=
-
Z
∞
0
x
y
+ 1
d
e
-
x
(
y
+1)
=
1
(
y
+ 1)
2
,
y >
0
.
Since
f
(
x, y
)
6
=
f
X
(
x
)
·
f
Y
(
y
),
X
and
Y
are not independent.
(b)
f
Z
(
z
) =
Z
∞
-∞
f
(
x, z/x
)
1
x
dx.
Since
x >
0
, y
=
z/x >
0
→
x >
0
, z >
0, then
f
Z
(
z
) =
Z
∞
0
f
(
x, z/x
)
1
x
dx
=
Z
∞
0
x
e
-
(
z
+
x
)
·
1
x
dx
= e
-
z
,
z >
0
.
(c) From
U
=
X
(
Y
+ 1),
V
=
1
Y
+ 1
, we have
X
=
UV
and
Y
=
1
V
-
1
.
The inverse of Jacobian determinant is given by
J
-
1
(
u, v
) =
∂x
∂u
∂x
∂v
∂y
∂u
∂y
∂v
=
v
u
0
-
1
v
2
=
-
1
v
.
Then joint distribution of (
U, V
) is given by
f
(
u, v
)
=
f
(
x, y
)
×
J
-
1
(
u, v
)
=
uv
e
-
u
×
1
v
=
u
e
-
u
,
u >
0
.
4. For
n
= 1
,
2
, . . .
, let
X
n
i
.
i
.
d
∼
N
(0
,
0
.
5),
W
n
=
X
2
n
-
X
2
n
-
1
and
Y
n
=
∑
n
j
=1
W
2
j
.
3
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
(a) What is the distribution of
W
n
?
(b) What is the distribution of
Y
n
?
(c) Find
P
(
Y
3
>
9
.
35)
(d) Find
P
(
Y
24
>
8
.
09)
(e) Find
P
(24
.
43
≤
Y
40
<
59
.
24)
(f) Find the 95
th
percentile of
Y
11
.
(g) Find the 1
st
percentile of
Y
15
.
Solution:
(a) From the result in Tutorial 8 Question 2 part (g), for
a
,
b
i
are real number,
Y
i
∼
N
(
μ
i
, σ
2
i
) independently
⇒
a
+
n
X
i
=1
b
i
Y
i
∼
N
a
+
n
X
i
=1
b
i
μ
i
,
n
X
i
=1
b
2
i
σ
2
i
!
,
we have
W
n
=
X
2
n
-
X
2
n
-
1
∼
N
(0
,
1).
(b) Since
W
n
i
.
i
.
d
∼
N
(0
,
1), from the result in Tutorial 8 Question 2 part (h), we have
Y
n
∼
χ
2
n
.
(c) From the chi-square table, we found that
P
(
Y
3
>
9
.
35) = 0
.
025. (One tailed upper 0.025 quantile)
(d)
P
(
Y
24
>
8
.
09) = 1
-
P
(
Y
24
≤
8
.
09) = 0
.
999 (One tailed lower 0.001 quantile).
(e)
P
(24
.
43
≤
Y
40
<
59
.
24) = 1
-
0
.
05 = 0
.
95 (Two tailed 0.05 quantile).
(f) Since
P
(
Y
11
≤
19
.
68) = 0
.
95, the 95
th
percentile of
Y
11
is 19.68.
(g) Since
P
(
Y
15
≤
5
.
23) = 0
.
01, the 1
th
percentile of
Y
11
is 5.23.
4
Related Documents
Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage