hw2_num1and2_submit

pdf

School

University of South Florida *

*We aren’t endorsed by this school

Course

4931

Subject

Mathematics

Date

Feb 20, 2024

Type

pdf

Pages

8

Uploaded by BaronTurtleMaster4039

Report
clear; clc; %HW 2 due 9/15 by 5 pm M1 = 10 * 10000; % M1 = 10cm =~ 1E5 um from beam splitter M2 = M1; % M2 is also 10cm dist = 0:0.025:2 % increment of distance (in um) M2 is moving away from beam splitter dist = 1×81 0 0.0250 0.0500 0.0750 0.1000 0.1250 0.1500 0.1750 M2 = M1 + dist M2 = 1×81 10 5 × 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 lambda_nm = 350:50:800; %wavelengths using 350nm to 800nm in increments of 50 nm lambda_um = lambda_nm ./ 1000 lambda_um = 1×10 0.3500 0.4000 0.4500 0.5000 0.5500 0.6000 0.6500 0.7000 a = length(lambda_um); b = linspace(dist(1), dist(end), a); array = [lambda_um; b]; %Compute the resultant intensity of light at the detector. %1.A.a % Plot intensity data for each wavelength ("lambda") separately in a % 5(row)X2(column) plots initialIntensity = 0; for j = 1:length(lambda_um) Intensity(j, :) = initialIntensity + (cos( (pi .* dist) ./ lambda_um(j) )).^2; subplot(5, 2, j); plot(dist, Intensity(j, :)) subplot(5,2,j) title([ 'Intensity at ' , num2str(lambda_nm(j)), 'nm' ] ) sgtitle( 'Intensity Plots at each Wavelength on M2"s distance from beam splitter' ) xlabel( 'Distance (um)' ) ylabel( 'Intensity (W/m^2)' ) end 1
%2 %a) You'll need to calculate the phase shift between % the light paths that was introduced by moving M2 %phaseShiftM2 = (4*pi* (M2(end) - M2(1)) ) ./ lambda_um %phaseShifted = (4*pi*dist) ./ lambda_um phaseShift = zeros([length(lambda_um) 81]); for j = 1:length(lambda_um) phaseShift(j,:) = ( (4*pi) .* dist) ./ (lambda_um(j)) ; end %2 b) figure; plot(dist,phaseShift(1,:)); xlabel( 'Distance (um)' ); ylabel( 'Phase Output' ); title( 'Phase Shift over Distance' ) %b) Next, calculate the sum of two sine waves with that phase shift. % -->Sample the sine waves at 0.1*π increments through % one complete cycle (2π) and add the values at each sample point. cycle = 0 : (0.1*pi) : 2*pi %this is how the directions wanted it cycle = 1×21 0 0.3142 0.6283 0.9425 1.2566 1.5708 1.8850 2.1991 cycleL = length(cycle); %using this length to scale down the matrix size of shift and sin calculations bc it's supposed to be 21, not 81 cycleLonger = linspace(cycle(1), cycle(end), 81) cycleLonger = 1×81 2
0 0.0785 0.1571 0.2356 0.3142 0.3927 0.4712 0.5498 sincyclefull = sin(cycleLonger); sinShiftIncfull = sin(phaseShift + cycleLonger); %sinShifted2pi = sin(phaseShift + 2*pi); sinShiftedpi = sin(phaseShift + pi); sumfull = sinShiftIncfull + sincyclefull; d1 = linspace(phaseShift(1), phaseShift(end), cycleL); %condensing the 81 columns to 21 %d2 = linspace(sinShift(1), sinShift(end), cycleL); %d3 = linspace(sinShift(1), sinShift(end), cycleL); %only for sample 1 dist_cycle = linspace(dist(1), dist(end), cycleL); tiledlayout(5,4) for k = cycleL sinPhaseShift(k, :) = sin(d1); sinCycle(k,:) = sin(cycle); sinShiftIncrem(k,:) = sin(d1 + cycle); sumSin(k,:) = sinCycle(k,:) + sinShiftIncrem(k,:); nexttile plot(dist_cycle, sinPhaseShift(k,1), 'g' ) xlabel( 'Distance (um)' ); ylabel( 'Phase Output' ) title( 'Sin Wave of Phase Shift' ) hold on plot(dist_cycle, sinCycle(k,2), 'c' ) xlabel( 'Distance (um)' ); ylabel( 'Phase Output' ) title( 'Sin Wave of Cycle' ) hold on plot(dist_cycle, sinShiftIncrem(k,3), 'r' ) xlabel( 'Distance (um)' ); ylabel( 'Phase Output' ) title( 'Sin Wave of PhaseShift+Cycle' ) %hold on %plot(cycle, sumSin(k,4), 'r') %xlabel('Radians'); ylabel('Phase Output') 3
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
%title('Sin Wave of PhaseShift+Cycle') hold off end % testing outside of for loop figure; plot(dist_cycle, sinPhaseShift(21,:), 'm' ) xlabel( 'Distance (um)' ); ylabel( 'Phase Output' ) title( 'Sin Wave of Phase Shift Partial' ) hold on plot(dist,sinShiftIncfull(1,:), 'b' ) xlabel( 'Distance (um)' ); ylabel( 'Phase Output' ) title( 'Sin Wave of Phase Shift Full' ) hold off figure; plot(dist_cycle, sinCycle(21,:), 'g' ) xlabel( 'Distance (um)' ); ylabel( 'Phase Output' ) title( 'Sin Wave of Cycle' ) 4
figure; plot(dist_cycle, sinShiftIncrem(21,:), 'm' ) xlabel( 'Distance (um)' ); ylabel( 'Phase Output' ) title( 'Sin Wave of PhaseShift+Cycle Approach A (partial)' ) hold on plot(dist, sinShiftIncfull(1,:), 'b' ) xlabel( 'Distance (um)' ); ylabel( 'Phase Output' ) title( 'Sin Wave of PhaseShift+Cycle Approach A (full)' ) hold off figure; plot(dist_cycle, sumSin(21,:), 'm' ) xlabel( 'Distance (um)' ); ylabel( 'Phase Output' ) title( 'Sin Wave of PhaseShift+Cycle partial' ) hold on plot(dist, sumfull(1,:), 'b' ) xlabel( 'Distance (um)' ); ylabel( 'Phase Output' ) title( 'Sin Wave of PhaseShift+Cycle full' ) hold off 5
%c) Then to compute intensity, square each value of the summed sine wave % (recall Intensity is proportional to Amplitude^2) sumSquared = ( (sinCycle + sinShiftIncrem) .^2); figure; plot(dist_cycle, sumSquared(21,:), 'r' ) xlabel( 'Distance (um)' ); ylabel( 'Phase Output' ) title( 'Intensity is proportional to Amplitude Squared' ) %d) Sum the 21 values and divide by 21 to achieve the average intensity avg21 = mean( sumSquared(21,:) ); fprintf( 'The average intensity is %f for the 21 samples' , avg21) The average intensity is 0.952381 for the 21 samples 2. Using the interferometer from problem 1, we will measure the index of refraction (n) of a thin piece of glass. A. Introduce into the middle of the light path from the beam splitter to M1 (at the 5 cm location) a piece of glass 1mm thick. For the purpose of this 6
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
problem, assume that the glass has index of refraction n = 1.4. M1_prob2 = 5*100 %5cm or 500um from beam splitter M1_prob2 = 500 n = 1.4; thickmm = 1; %thickness of glass is 1mm thickum = thickmm*1000 %converting to microns thickum = 1000 %Plot intensity profile while moving M2 as in #1 % without and with the piece of glass in the light path. lambdanm = M1_prob2; %wavelength lambda is 500nm lambdaum = lambdanm / 1000; M1Refraction = lambdaum / n; figure; intensity2a = ( cos( (pi .* dist) ./ lambdaum) ).^2 ; intensity2a = 1×81 1.0000 0.9755 0.9045 0.7939 0.6545 0.5000 0.3455 0.2061 plot(dist, intensity2a, '.b' ) hold on optPathDiff = 2*thickum*(n-1); phaseShift2 = ( (2*pi) / lambdaum) * optPathDiff; intensity2b = (cos( (phaseShift2-thickum) + ((pi.*dist)./lambdaum) )).^2 ; intensity2b = 1×81 0.3163 0.4690 0.6247 0.7682 0.8855 0.9650 0.9990 0.9842 plot(dist, intensity2b, '-g' ) xlabel( 'distance (um)' ); ylabel( 'Intensity' ); title( 'Intensity Profile due to Glass' ) legend( 'Without Glass' , 'With Glass' ) hold off 7
8