roblesjonah_917869_53770480_HW10_2850

pdf

School

Arizona State University *

*We aren’t endorsed by this school

Course

MISC

Subject

Mathematics

Date

Nov 24, 2024

Type

pdf

Pages

9

Uploaded by BailiffPelican2900

Report
0.1 \ o\ ¢ (x) = £ 06 LEL) o () = omm FLg) =FUD- T (1) - e (0.3 £701.6) = L24 -2+ 134 .04 s =10 %] b) crlg) = Flxg)eUE (%i.,) -5 (x-‘_\\ +]15(x,) h’L F(2) -_,»J"—(?\.\)LL{F(L@ - 5@/73 Flfi(z) ) —14.5+9(3.4) -5 (1.0) + 70) Y F2)=.07% "e . ol (N Bloky 5 (o= —Eq’ B(6.3) = .09 Wm gm@
\C_ YZ_ - 77*, 1L€)%TK )l k )Yl K\)b_ 7\)/1/37“’ V= 241 U-5= 05+ () TN )T (903 4 O =¢+1-U) +% = (02 (F)y) *(l‘)") ()%= 204,149 O =¢+ Q-2+ 7 1=( DQ’YK) L)+ M-y =y -\ -\ m\\- U \’j‘”) 3 " 1) / ' \{L \ ) (K QVL \\ AR R0 (A 0 5 (9,300 4 Yy = ! A l ('K T —_ [ he S 7( A \ 0 //’3’ XQ ‘\‘\)() 3xv 5 - \ \j CIPE R EANN . '('X)//.j' Q-;- _ h 17 hxv ’\'[’}q///) xvh "('79,/:} XV’L—\' \‘X) jxtl\(, ‘j 1.. AOLIT + (I+"fg+'lf()[—l_!fZI+z_'lf9—€_!f) EXIVZ=(!x),,,f \ % Q\ RS hl \, y W k%;)s‘—j AWENTTRY JRV 3-\03= a9 - %) 2 L (")9///1/ j' / (xvs —x)f (0, T (0, A (), G () SO+ (1) = (@430 \ \( \ 0 |
AV %) (D(\W-—-( Q‘f’( \ —(?)) =0 Q“l(\ (X\—A F \ ) = Constont ?u\(%\ 0 _———F Quadwene Pb’ eciswn FUG) = Congdan - £'0) = constapt
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
Use Taylor series expansions to derive a forward difference scheme, over equally-spaced points, using any or all of f;, fi.1, fis2, fir3 and fi,, that approximates df/dx? (2" derivative at x;) to order (Ax?) discretization error. O H) | OXE 66 | X ) | gl sy DX Yol | \ | Ve | Yau | Ve ¥1+1 C \ N L LV? 1/3 u/|5 b || 3 ‘o U 7’7/15 {I/L(o 3x |31 |k Sieu o \ 4 \ 5 |73 | IS AE (X AN K vans nxE Y elimwnate —oxg' ) X S0x) A §"() 0%, ¥ bl F iy © o5, ) %“*%QF%L—F%é: \ AXS 1) U 3k Fle v =0 A 3) 64'\’%’5'\‘1(_+%§:6 e L\ 4] %0&25 tRenl yog o 3 24
SLlh G LVg 7 6| /l Y E L ~ \ | .;5P7n+fi~% ) 2 (a) 47 (3)- Qmwz - (on\ 2464= @ NS “(fi\*? Q). (D) £4 (%) = SELA R APy (3n\- 1L (45) +4 0/6) W -3 ()17 (%) -n (51 +4(%4) = 0 (y)!, - (‘?fl K18, )- \1(/5\ (o) ==L —}i\g‘.u«*‘?? (n, G\FM ’:*MF Y- Z\MS?V&) S~
4 Vv —_ KJ@QVWW‘7%bH M[OA 2|9 " #od oo Ao | N T () AP +— 7«31)0[\3!1&@ -]'40l1§‘!“" _)B@.XQ ’kg)\j ( I A A [= (17_)3( (QX[;,U +(x)urs = (é)/f (&) ‘WwJ0} pdepuels ul 340 dY3 UM Il ‘(wajqoud anjep Asepunog) dAG 410 (wa|qoad an|eA |elu|) dAl Ue se 3 azuaydeseyd ‘Il ' ‘(*032 49pJ0-p,T UBPIO-T "6°2) J3pJO S}l dzIdYORIEYD | "' $3Q0 234y} 3UIMO||0} 9Y3 JO Yydoea Jo4
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
You want to solve the foIIowmg 1s%-order Initial Value Problem: initial condition T(t =0) = T, = 30. 4 0. (a) Use the (single-step, explicit) Euler method to solve the 1%-order IVP dT = 4_3_ L where T is the temperature of the room (in °C), and t is time (in dt 18 45 300 minutes). Solve the problem over the range t = [0, 40] minutes, T(0)=30 using step size At = 10 min (i.e. calculate T; at t; =0, t; = 10, t, = 20, t; = 30, and t, = 40 minutes). Show all your work in table form, like we did in class, showing how you start from each (t; T;) to get the next t,,;, “slope/”, and T,,;. Tw=THl st ot v L U5 00 -6, y 1 =T kot 18745 300 =10 =3064-22(]o) a @: ok ’)\"/I’L.gkj -
T ook, (s _ 161 T =52Xn s : o8 =LA )56 TZ 724 7 1 4 U5 oy T
(b) Make a sketch of T;(t;) (i.e. draw and connect the 5 dots), and comment about what time you think (if ever!) the temperature of the room will get down to 18°C. () T 1'\2 (OQ)YV\ Yeathes ¢ belween /Z/C) S G1nd ?)O 5. f\’\y 5&/655 wWould be ‘\’:1G $€ceonds
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help