SCM 2160 05 forecasting activity - with answers

xlsx

School

University of Manitoba *

*We aren’t endorsed by this school

Course

2160

Subject

Economics

Date

Feb 20, 2024

Type

xlsx

Pages

11

Uploaded by GeneralDeerMaster1024

Report
Week Demand Error 1 63 2 70 63 3 78 70 4 51 78 5 56 51 6 67 56 7 80 67 Week Demand Error 1 63 2 70 3 78 66.5 4 51 74 5 56 64.5 6 67 53.5 7 80 61.5 Week Demand Error 1 63 2 70 3 78 4 51 76.05 5 56 56.00 6 67 56.35 7 80 64.55 Week Demand Error 1 63 2 70 58.65 3 78 60.35 4 51 63.00 5 56 61.20 6 67 60.42 7 80 61.41 Naive Forecast Square Error Absolute Error Percenta ge Error 2-Period Moving Average Square Error Absolute Error Percenta ge Error Weighted Moving Average Square Error Absolute Error Percenta ge Error Exponential Smoothing w/ α= .15 Square Error Absolute Error Percenta ge Error
Week Demand Forecast 1 63 2 70 3 78 4 51 5 56 6 67 7 80
Week Demand Naive Forecast Error Square Error Absolute Error 1 137 2 136 137 -1 1.00 1.0 3 143 4 136 5 141 6 128 7 149 8 136 9 134 10 143 Week Demand Error Square Error Absolute Error 1 137 2 136 3 143 4 136 5 141 6 128 7 149 8 136 9 134 10 143 Week Demand Error Square Error Absolute Error 1 137 2 136 3-Period Moving Average Exponential Smoothing w/ α= .28 1. A company is trying to select a forecasting model. Using the attached spreadshe and exponential smoothing forecasts. (For exponential smoothing, use the 3-perio 2. Which forecast method should management use if the performance criterion it
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
3 143 4 136 5 141 6 128 7 149 8 136 9 134 10 143
Model CFE MSE MAD Naive 1% 3-Period Moving Average Exponential Smoothing Absolute Percentage Error Absolute Percentage Error Absolute Percentage Error For exponential smoothing, use your forecast from the 3- period moving average as your first input eet and data provided, compute the naive forecast, 3-period moving average od moving average forecast as your input for the first week.) chooses is: CFE? MSE? MAD? MAPE?
MAPE
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
Week Demand Naive Forecast Error Square Error Absolute Error 1 137 2 136 137 -1 1.00 1.0 3 143 136 7 49.00 7.0 4 136 143 -7 49.00 7.0 5 141 136 5 25.00 5.0 6 128 141 -13 169.00 13.0 7 149 128 21 441.00 21.0 8 136 149 -13 169.00 13.0 9 134 136 -2 4.00 2.0 10 143 134 9 81.00 9.0 Week Demand Error Square Error Absolute Error 1 137 2 136 3 143 4 136 138.67 -2.67 7.11 2.67 5 141 138.33 2.67 7.11 2.67 6 128 140.00 -12.00 144.00 12.00 7 149 135.00 14.00 196.00 14.00 8 136 139.33 -3.33 11.11 3.33 9 134 137.67 -3.67 13.44 3.67 10 143 139.67 3.33 11.11 3.33 Week Demand Error Square Error Absolute Error 1 137 2 136 3 143 4 136 5 141 137.92 3.08 9.49 3.08 6 128 138.78 -10.78 116.26 10.78 7 149 135.76 13.24 175.21 13.24 8 136 139.47 -3.47 12.04 3.47 9 134 138.50 -4.50 20.23 4.50 10 143 137.24 5.76 33.19 5.76 3-Period Moving Average Exponential Smoothing w/ α= .28
Week Demand Error Square Error Absolute Error 1 137 2 136 3 143 4 136 5 141 137.33 3.67 13.44 3.67 6 128 139.17 -11.17 124.69 11.17 7 149 133.58 15.42 237.67 15.42 8 136 141.29 -5.29 28.00 5.29 9 134 138.65 -4.65 21.58 4.65 10 143 136.32 6.68 44.58 6.68 Week Demand Error Square Error Absolute Error 1 137 2 136 3 143 4 136 5 141 138.40 2.60 6.76 2.60 6 128 138.66 -10.66 113.64 10.66 7 149 137.59 11.41 130.10 11.41 8 136 138.73 -2.73 7.48 2.73 9 134 138.46 -4.46 19.90 4.46 10 143 138.02 4.98 24.85 4.98 Exponential Smoothing w/ α= .5 Exponential Smoothing w/ α= .1
Model CFE MSE Naive 7.00 148.17 1% 3-Period Moving Average 1.00 63.80 5% Exponential Smoothing (α=.28) 3.33 61.07 5% Exponential Smoothing (α=.5) 4.66 78.33 4% Exponential Smoothing (α=.1) 1.14 50.45 10% 14% 10% 1% 6% 2% 2% 9% 9% 2% 3% 2% 2% 8% 9% 3% 3% 4% Absolute Percentage Error Percentage Error Percentage Error 1 2 3 4 5 6 7 115 120 125 130 135 140 145 150 155 Demand You may have noticed that the error calculations for t and 3-period moving average do not include every w that when comparing forecasts, it's only fair to comp performance across the same number of periods. The exponential smoothing forecast does not start un calculations across all models should also start at We Observing the demand pattern is one way to start to may perform best. This demand pattern looks somewhat random, with q variation. This suggests that smoothing will be helpfu better α=0.1 (high smoothing, 90% of info drawn from performs compared to an α=.5 (low smoothing, 50% previous demand)
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
3% 9% 10% 4% 3% 5% 2% 8% 8% 2% 3% 3% Percentage Error These two examples show how the values and error changes based on the alpha value chosen! Percentage Error
MAD MAPE 10.5 8% 6.50 5% 6.80 5% 7.81 6% 6.14 4% 8 9 10 the naive method week. The reason is pare their ntil Week 5, so error eek 5. judge what method quite a bit of ul! Look at how much m the forecast) of info drawn from