Solutions for Pearson eText for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry -- Instant Access (Pearson+)
Problem 1AYU:
Find f( 3 ) if f( x )=4 x 2 +5x . (pp. 60-62)Problem 2AYU:
Find f(3x) if f(x)=42 x 2 . (pp. 60-62)Problem 7AYU:
7. If H=fg and , which of the following
cannot be the component functions f and g?
;
;
;
;
Problem 8AYU:
8. True or False The domain of the composite function
(fg) (x) is the same as the domain of g(x).
Problem 9AYU:
9. In Problems 9 and 10, evaluate each expression using the values given in the table.
(a)(f◦g)(1) ...Problem 10AYU:
In Problems 9 and 10, evaluate each expression using the values given in the table. a. ( fg )( 1 )...Problem 11AYU:
(
11.
In Problems 11 and 12, evaluate each ex
pression using the graphs of y =
f
(
x
)
and y...Problem 12AYU:
In Problems 11 and 12, evaluate each expression using the graphs of y=f(x) and y=g(x) shown in the...Problem 13AYU:
In Problems 13-22, for the given functions f and g , find: a. ( fg )( 4 ) b. ( gf )( 2 ) c. ( ff )(...Problem 14AYU:
In Problems 13-22, for the given functions f and g , find: a. ( fg )( 4 ) b. ( gf )( 2 ) c. ( ff )(...Problem 15AYU:
In Problem 13-22, for the given functions f and g, find: (fg)(4) (gf)(2) (ff)(1) (gg)(0)...Problem 16AYU:
In Problems 13-22, for the given functions f and g , find: a. ( fg )( 4 ) b. ( gf )( 2 ) c. ( ff )(...Problem 18AYU:
In Problems 13-22, for the given functions f and g , find: a. ( fg )( 4 ) b. ( gf )( 2 ) c. ( ff )(...Problem 19AYU:
In Problems 13 22, for the given functions f and g, find: (fg)(4) (gf)(2) (ff)(1) (gg)(0)...Problem 20AYU:
In Problems 13-22, for the given functions f and g , find: a. ( fg )( 4 ) b. ( gf )( 2 ) c. ( ff )(...Problem 21AYU:
In Problems 13-22, for the given functions f and g , find: a. ( fg )( 4 ) b. ( gf )( 2 ) c. ( ff )(...Problem 22AYU:
In Problems 13-22, for the given functions f and g, find:
(a) (f◦g) (4) (b)( g◦f) (2) ...Problem 23AYU:
In problems 2338, for the given functions f and g, find: fg gf ff gg State the domain of each...Problem 24AYU:
In Problems 23-38, for the given functions f and g, find:
(a) f◦g (b) g◦f (c) f◦f (d)...Problem 25AYU:
In Problems 23-38, for the given functions f and g , find: a. fg b. gf c. ff d. gg State the domain...Problem 26AYU:
In Problems 23-38, for the given functions f and g, find:
(a) f◦g (b) g◦f (c) f◦f (d)...Problem 27AYU:
In Problems 23-38, for the given functions f and g, find:
(a) f◦g (b) g◦f (c) f◦f (d)...Problem 28AYU:
In Problems 23-38, for the given functions f and g, find:
(a) f◦g (b) g◦f (c) f◦f (d)...Problem 29AYU:
In Problems 23-38, for the given functions f and g, find:
(a) f◦g (b) g◦f (c) f◦f (d)...Problem 30AYU:
In Problems 23-38, for the given functions f and g, find:
(a) f◦g (b) g◦f (c) f◦f (d)...Problem 31AYU:
In Problems 23-38, for the given functions f and g, find:
(a) f◦g (b) g◦f (c) f◦f (d)...Problem 32AYU:
In Problems 23-38, for the given functions f and g, find:
(a) f◦g (b) g◦f (c) f◦f (d)...Problem 33AYU:
In Problems 23 – 38, for the given functions f and g, find:
State the domain of each composite...Problem 34AYU:
In Problems 23-38, for the given functions f and g , find: a. fg b. gf c. ff d. gg State the domain...Problem 35AYU:
In Problems 23 38, for the given functions f and g, find: (fg) (gf) (ff) (gg) State the domain of...Problem 36AYU:
In Problems 23-38, for the given functions f and g, find:
(a) f◦g (b) g◦f (c) f◦f (d)...Problem 37AYU:
In Problems 23-38, for the given functions f and g, find:
(a) f◦g (b) g◦f (c) f◦f (d)...Problem 38AYU:
In Problems 23-38, for the given functions f and g , find: a. fg b. gf c. ff d. gg State the domain...Problem 43AYU:
In Problems 39 – 46, show that.
43.
Problem 44AYU:
In Problems 39-46, show that (f◦g) (x) = (g◦f) (x) = x.
44. f(x) = 4 - 3x ; g(x) = (4 – x)
Problem 46AYU:
In Problems 39-46, show that (f◦g) (x) = (g◦f) (x) = x.
46.;
Problem 53AYU:
53. If and g(x) =2, find (f◦g) (x)
and (g◦f) (x).
Problem 54AYU:
54. If , find (f◦f) (x).
Problem 57AYU:
In Problems 57 and 58, use the functions f and g to find:
(a) f◦g (b) g◦f
(c) the domain of f◦g and...Problem 58AYU:
In Problems 57 and 58, use the functions f and g to find: a. fg b. gf c. the domain of fg and of gf...Problem 59AYU:
59. Surface Area of a Balloon The surface area S (in square
meters) of a hot-air balloon is given...Problem 60AYU:
60. Volume of a Balloon The volume V (in cubic meters) of the hot-air balloon described in Problem...Problem 61AYU:
Automobile Production The number N of cars produced at a certain factory in one day after t hours of...Problem 62AYU:
Environmental Concerns The spread of oil leaking from a tanker is in the shape of a circle. If the...Problem 63AYU:
Production Cost The price p , in dollars, of a certain product and the quantity x sold obey the...Problem 64AYU:
Cost of a Commodity The price p , in dollars, of a certain commodity and the quantity X sold obey...Problem 65AYU:
Volume of a Cylinder The volume V of a right circular cylinder of height h and radius r is V= r 2 h...Problem 66AYU:
Volume of a Cone The volume V of a right circular cone is V= 1 3 r 2 h . If the height is twice the...Problem 67AYU:
Foreign Exchange Traders often buy foreign currency in the hope of making money when the currencys...Problem 68AYU:
68. Temperature Conversion The function converts a temperature in degrees Fahrenheit, F, to a...Problem 69AYU:
Discounts The manufacturer of a computer is offering two discounts on last year’s model computer....Problem 70AYU:
Taxes Suppose that you work for 15 per hour. Write a function that represents gross salary G as a...Problem 73AYU:
71. Let and , where a and b are
integers. if f(1) = 8 and f(g(20)) - g(f(20)) = -14, find the...Problem 75AYU:
73. If f is an odd function and g is an even function, show that the composite functions f◦g and g◦f...Problem 76AYU:
Problems 74-77 are based on material learned earlier in the course. The purpose of these problems is...Browse All Chapters of This Textbook
Chapter F - Foundations: A Prelude To FunctionsChapter F.1 - The Distance And Midpoint FormulasChapter F.2 - Graphs Of Equations In Two Variables; Intercepts; SymmetryChapter F.3 - LinesChapter F.4 - CirclesChapter 1 - Functions And Their GraphsChapter 1.1 - FunctionsChapter 1.2 - The Graph Of A FunctionChapter 1.3 - Properties Of FunctionsChapter 1.4 - Library Of Functions; Piecewise-defined Functions
Chapter 1.5 - Graphing Techniques: TransformationsChapter 1.6 - Mathematical Models: Building FunctionsChapter 1.7 - Building Mathematical Models Using VariationChapter 2 - Linear And Quadratic FunctionsChapter 2.1 - Properties Of Linear Functions And Linear ModelsChapter 2.2 - Building Linear Models From DataChapter 2.3 - Quadratic Functions And Their ZerosChapter 2.4 - Properties Of Quadratic FunctionsChapter 2.5 - Inequalities Involving Quadratic FunctionsChapter 2.6 - Building Quadratic Models From Verbal Descriptions And From DataChapter 2.7 - Complex Zeros Of A Quadratic FunctionChapter 2.8 - Equations And Inequalities Involving The Absolute Value FunctionChapter 3 - Polynomial And Rational FunctionsChapter 3.1 - Polynomial Functions And ModelsChapter 3.2 - The Real Zeros Of A Polynomial FunctionChapter 3.3 - Complex Zeros; Fundamental Theorem Of AlgebraChapter 3.4 - Properties Of Rational FunctionsChapter 3.5 - The Graph Of A Rational FunctionChapter 3.6 - Polynomial And Rational InequalitiesChapter 4 - Exponential And Logarithmic FunctionsChapter 4.1 - Composite FunctionsChapter 4.2 - One-to-one Functions; Inverse FunctionsChapter 4.3 - Exponential FunctionsChapter 4.4 - Logarithmic FunctionsChapter 4.5 - Properties Of LogarithmsChapter 4.6 - Logarithmic And Exponential EquationsChapter 4.7 - Financial ModelsChapter 4.8 - Exponential Growth And Decay Models; Newton’s Law; Logistic Growth And Decay ModelsChapter 4.9 - Building Exponential, Logarithmic, And Logistic Models From DataChapter 5 - Trigonometric FunctionsChapter 5.1 - Angles And Their MeasureChapter 5.2 - Trigonometric Functions: Unit Circle ApproachChapter 5.3 - Properties Of The Trigonometric FunctionsChapter 5.4 - Graphs Of The Sine And Cosine FunctionsChapter 5.5 - Graphs Of The Tangent, Cotangent, Cosecant, And Secant FunctionsChapter 5.6 - Phase Shift; Sinusoidal Curve FittingChapter 6 - Analytic TrigonometryChapter 6.1 - The Inverse Sine, Cosine, And Tangent FunctionsChapter 6.2 - The Inverse Trigonometric Functions (continued)Chapter 6.3 - Trigonometric EquationsChapter 6.4 - Trigonometric IdentitiesChapter 6.5 - Sum And Difference FormulasChapter 6.6 - Double-angle And Half-angle FormulasChapter 6.7 - Product-to-sum And Sum-to-product FormulasChapter 7 - Applications Of Trigonometric FunctionsChapter 7.1 - Right Triangle Trigonometry; ApplicationsChapter 7.2 - The Law Of SinesChapter 7.3 - The Law Of CosinesChapter 7.4 - Area Of A TriangleChapter 7.5 - Simple Harmonic Motion; Damped Motion; Combining WavesChapter 8 - Polar Coordinates; VectorsChapter 8.1 - Polar CoordinatesChapter 8.2 - Polar Equations And GraphsChapter 8.3 - The Complex Plane; De Moivre’s TheoremChapter 8.4 - VectorsChapter 8.5 - The Dot ProductChapter 8.6 - Vectors In SpaceChapter 8.7 - The Cross ProductChapter 9 - Analytic GeometryChapter 9.2 - The ParabolaChapter 9.3 - The EllipseChapter 9.4 - The HyperbolaChapter 9.5 - Rotation Of Axes; General Form Of A ConicChapter 9.6 - Polar Equations Of ConicsChapter 9.7 - Plane Curves And Parametric EquationsChapter 10 - Systems Of Equations And InequalitiesChapter 10.1 - Systems Of Linear Equations: Substitution And EliminationChapter 10.2 - Systems Of Linear Equations: MatricesChapter 10.3 - Systems Of Linear Equations: DeterminantsChapter 10.4 - Matrix AlgebraChapter 10.5 - Partial Fraction DecompositionChapter 10.6 - Systems Of Nonlinear EquationsChapter 10.7 - Systems Of InequalitiesChapter 10.8 - Linear ProgrammingChapter 11 - Sequences; Induction; The Binomial TheoremChapter 11.1 - SequencesChapter 11.2 - Arithmetic SequencesChapter 11.3 - Geometric Sequences; Geometric SeriesChapter 11.4 - Mathematical InductionChapter 11.5 - The Binomial TheoremChapter 12 - Counting And ProbabilityChapter 12.1 - CountingChapter 12.2 - Permutations And CombinationsChapter 12.3 - ProbabilityChapter 13 - A Preview Of Calculus: The Limit, Derivative, And Integral Of A FunctionChapter 13.1 - Finding Limits Using Tables And GraphsChapter 13.2 - Algebra Techniques For Finding LimitsChapter 13.3 - One-sided Limits; Continuous FunctionsChapter 13.4 - The Tangent Problem; The DerivativeChapter 13.5 - The Area Problem; The IntegralChapter A.1 - Algebra EssentialsChapter A.2 - Geometry EssentialsChapter A.3 - PolynomialsChapter A.4 - Factoring PolynomialsChapter A.5 - Synthetic DivisionChapter A.6 - Rational ExpressionsChapter A.7 - Nth Roots; Rational ExponentsChapter A.8 - Solving EquationsChapter A.9 - Problem Solving: Interest, Mixture, Uniform Motion, Constant Rate Job ApplicationsChapter A.10 - Interval Notation; Solving InequalitiesChapter A.11 - Complex NumbersChapter B.1 - The Viewing RectangleChapter B.2 - Using A Graphing Utility To Graph EquationsChapter B.3 - Using A Graphing Utility To Locate Intercepts And Check For SymmetryChapter B.5 - Square Screens
Sample Solutions for this Textbook
We offer sample solutions for Pearson eText for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry -- Instant Access (Pearson+) homework problems. See examples below:
Chapter F, Problem 1CPChapter 1, Problem 1REChapter 2, Problem 1REChapter 3, Problem 1REChapter 4, Problem 1REChapter 5, Problem 1REChapter 6, Problem 1REChapter 7, Problem 1REChapter 8, Problem 1RE
Chapter 9, Problem 1REGiven information: The system, {2x−y=5 5x+2y=8 Explanation: To solve the system equations by using...Chapter 11, Problem 1REGiven: The set {Dave, Joanne, Erica}. Calculation: The set {Dave, Joanne, Erica}. Subsets = ∅, {...Chapter 13, Problem 1REGiven Information: The given rational number {−3,0,2,65,π}. Explanation: Integers are the set of...
More Editions of This Book
Corresponding editions of this textbook are also available below:
Precalculus: Concepts Through Functions, A Unit Circle Approach To Trigonometry, A Corequisite Solution - 18-week Access Card
4th Edition
ISBN: 9780135874592
Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (4th Edition)
4th Edition
ISBN: 9780134686974
MyLab Math with Pearson eText -- Standalone Access Card -- for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (4th Edition)
4th Edition
ISBN: 9780134852218
PRECALCULUS:CONCEPTS...-MYLAB+ETEXT
4th Edition
ISBN: 9780135874738
PRECALCULUS:CONCEPTS...(LL)-W/MYMATHLAB
4th Edition
ISBN: 9780134856520
Precalculus Format: Unbound (saleable)
4th Edition
ISBN: 9780134689852
PRECALCULUS: CONCEPTS THROUGH FUNCTIONS
4th Edition
ISBN: 9780135239902
PRECALCULUS:CONCEPTS...>LL< W/ACCESS
4th Edition
ISBN: 9780136167020
PRECALCULUS:CONC.THRU FUNCTIONS W/ACCES
4th Edition
ISBN: 9780136166962
Mylab Math With Pearson Etext -- 24-month Standalone Access Card -- For Precalculus: Concepts Through Functions, A Unit Circle Approach To Trigonometry, A Corequisite Solution (4th Edition)
4th Edition
ISBN: 9780135874653
Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry Plus MyLab Math with eText -- Access Card Package (4th Edition) (What's New in Precalculus)
4th Edition
ISBN: 9780134859040
PRECALC. CONCEPTS -MYLAB MATH (18WK)
4th Edition
ISBN: 9780135903742
EBK PRECALCULUS
4th Edition
ISBN: 9780134775173
Pearson eText for Precalculus: Concepts Through Functions, A Right Triangle Approach to Trigonometry -- Instant Access (Pearson+)
4th Edition
ISBN: 9780137399581
PRECAL: CONCEPTS >IA<
4th Edition
ISBN: 9780136710226
PRECALCULUS:CONC LL+MML 18WK PACKAGE
4th Edition
ISBN: 9780136166924
Related Calculus Textbooks with Solutions
Still sussing out bartleby
Check out a sample textbook solution.